
tUSACERL Technical Manuscript E-90/01

January 1990

US Army Corps
of Engineers
Construction Engineering
Research Laboratory

,- Multiple-Input Transfer Function Model of
< Heat Transfer From Square Slab FloorsI

JoAnn Amber

MAR 1 6 1090,O1

Existing detailed hourly energy analysis programs do not Ds
adequately model the heat transfer between buildings
and the ground. A simple model of the ground heat
transfer compatible with both existing hourly energy
analysis programs and simpler building models is vital
as energy conservation techniques reduce the above-
ground heat loss and building-ground heat transfer
becomes more significant.

This study extends present techniques from the strictly
geometric context of the numerical solution methods to
the more conceptual environment of simplified models.
Specifically, these concepts are applied to the problem
of heat conduction through slab-on-grade surfaces.

Tested over a broad range of climatic conditions, the
multiple-input transfer function model calculates slab
heat flux. The accuracy of the model is dependent
upon the accuracy of the input data; however, some
reasonable approximations to the necessary input data
can give acceptable results.

The full capability of the model was not tested in this
study. Further work to develop a definition of the net-
work parameters based on characteristic length could
expand the use of the model to nonsquare and possibly
even nonrectangular surfaces. ,. ,

Approved for public release; distribution is unlimited.

90 03 15 016



Tile contents of this report are not to be used for advertising, publication,
or promotional purposes. Citation of trade names does not constitute an
official indorsement or approval of the use of such commercial products.
The findings of this report are not to be construed as an official Depart-
ment of the Army position, unlcss so designated by other authorized
documents.

DESTROY TillS REPORT WHEN IT IS NO LONGER NEEDED

DO NOT RETURN IT TO THE ORIGINATOR



UNCLASSIFIED
SF(CiRITY CLASSIFsCATION OF THIS PAGE

Form ApprovedREPORT DOCUMENTATION PAGE Ot&48 No 0 704 0 ?g8

la~ REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGST i teun 18

UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3 DiSrRiBurIONIAVAILABILITy OF REPORT

2b DLLASIFIATIO DONGRAINGSCHEULEApproved for public release;It) E(.aSSIICAION DOWGRAING CHEULEdistribution is unlimited.
4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATON REPORT NUMBER(S)

USACERL Technical Manuscript E-90/01
6a 14AME OF PERFORMING ORGANIZATION 16b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

U.S. Army Construction (if applicable)

Engr Research Laborato ry CECER-ES

6( ADDRESS (City. State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Sqa %AVE OF FLJNOING, SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
RG %IZAION(if applicable)

ELEMENT NO NO NO ACCESS-ON %O
Washington, DC 20314-1000 4AI61102 IAT23 EB ER9

11 - ITL (include Security Claisification)

Multiple-Input Transfer Function Model of Heat Transfer From Square Slab Floors (U)

2 i'F FiSNAL AUTHOR(S)

A\mber, Joann 

4
13d FrPI OF REPORT 13 b TIME COVERED 14DATE OF REPORT (Year. Month, Day) 5 123 CUN

Final ___FROM TO 1990. January P1G2CUN

16 S( PPIEMI.JTARY NOTATION
Copies are available from the National Technical Information Service, 5285 Port Roya
Road, Springfield, VA 22161.

17COSArI COD)ES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
'-IF; D CROUP SUBGRU heat transfer square slab floors

__20 13 buildings
to 01 ground

-4 HiIlII R Continue ors reverse it necessary and identify by block number)

Eixisting detailed hourly energy analysis programs do not adequately model the heat transfer
hetween buildings and the ground. A simple model of the ground heat transfer compatible with both
existing hourly energy analysis programs and simpler building models is vital as energy conservation
Icchniqucs reduce the above-ground heat loss and building-ground heat transfer becomes more

TFhis study cxtcndls present techniques from the strictly geometric context of the numerical solution
mcthiods to the more conceptual environment of simplified models. Specifically, these concepts are
applied to the problem of heat conduction through slab-on-grade surfaces.

,P RT! N A 1,A.RI, TY OF ARSTRA(T 21 ABSTRACT SECURITY CLASSiFICATION
L[A jf , A tF;) (,I. L.mI F ) 0J "amE A S QIT C] DtIC I)SERS UNCLASSIFIED '0

'-V 01 4 ' 1?,)4( SHIt NIIDkUAL !?b TELEPHONF (include Area Code) 122( OcFFCE SyBOLLifnda L. Wheatley (217) 352-6511 (ext3381 CECER-IMT
DD FORM 1471. 8a %rNP I 1 A'Hi ,'d-ion may te uwd,( u,)?,) og raused ,ir. Piry (LASS(FfCA',lON OF 'H! PaGE

Aflther el.?,U,. Aii otriil.Ii UNCLASSIFIED



UNCLASSIFIED

B[A;'K 19. (Cont'd)

Tested over a broad range of climatic conditions, the multiple-input transfer function model cal-
culates slab heat flux. The accuracy of the model is dependent upon the accuracy of the input data;
however, some reasonable approximations to the necessary input data can give acceptable results.

The full capability of the model was not tested in this study. Further work to develop a definition
of the network parameters based on characteristic length could expand the use of the model to non-
square and possibly even nonrectangular surfaces.

UNCLASSIFIED



FOREWORD

This research was funded under Project 4A1 61102AT23, "Basic Research in Military Construction";
Work Unit EB-ER9, "Underground Heat Transfer Algorithms."

This manuscript was submitted in partial fulfillment of the requirements for the degree of Master
of Science in Mechanical Engineering in the Graduate College of the University of Illinois at Urbana-
Champaign. The advisor for this thesis was Dr. Curt Pedersen.

Technical guidance and support were provided by Dr. William P. Bahnfleth and Linda Lawrie,
Energy Systems Division (ES), USACERL. Dr. Gilbert R. Williamson is Chief of USACERL-ES.

COL Carl 0. Magncll is Commander and Director of USACERL, and Dr. L. R. Shaffer is
Technical Director.

NTP

J .
. . . . . . . . . . . ... .. . . . .. ..

D. 

. o .. .
_,

..... .. .. _ I

IA-1

v, :

! 

i.

Vi



CONTENTS

Page

DD FORM 1473 iii
FOREWORD v
LIST OF FIGURES vii
LIST OF TABLES ix

1 INTRODUCTION .......................................... 1

2 CONCEPT ............................................... 2

3 MODEL DEVELOPMENT .................................... 5
Structure 5
Basic Equations 6
Geometry 11
Soil Properties 16
Inputs 17

4 NETW ORK ............................................... 18
Method 18
Base Case 18
Description of Test System 19
Geometric Definition of Network Parameters 24
Parameter Refinement Using Empirical Methods 34

5 FINAL DEFINITION AND TESTING ............................ 52
Final Definition 52
Validation 57

6 NETWORK PARAMETERS BASED ON CHARACTERISTIC LENGTH .... 78

7 UTILIZATION OF TIlE GTF MODEL FOR ENERGY ANALYSIS ....... 87

8 CONCLUSIONS ........................................... 88

9 REFERENCES ............................................ 89

APPENDIX A: SEEM'S METHOD 90
APPENDIX B: TRUE BASIC PROGRAM GTF 96
APPENDIX C: TRUBASIC PROGRAM QCALC 108

DISTRIBUTION

vi



LIST OF FIGURES

Figure
Number Page

1 7-Node Network Model ............................... 5

2 Undisturbed Ground Temperature Profiles ......... 13

3 FDM of Two Square Slabs ........................... 19

4 Daily Average Air Temperature - Minneapolis MN... 22

5 Daily Average Air Temperature - Medford OR ...... 22

6 Daily Average Air Temperature - Philadelphia PA . 23

7 Daily Average Air Temperature - Phoenix AZ ...... 23

8 Flux -- FDM and Run 1A ............................ 33

9 Flux and Difference -- Run 1A .................... 33

10 Flux -- FDM and Run lB ............................ 36

11 Flux and Difference -- Run lB .................... 36

12 Flux -- FDM and Run IC ............................ 38

13 Flux and Difference -- Run IC..................... 39

14 Flux and Difference -- Run 2A ..................... 41

15 Flux and Difference -- Run 2B .................... 44

16 Flux and Difference -- Run 2C ..................... 46

17 Flux and Difference -- Run 2D ................... 48

18 Flux and Difference -- Minneapolis MN ............ 58

19 Flux and Difference -- Medford OR ................. 58

20 Flux and Difference -- Philadelphia PA ........... 59

21 Flux and Difference -- Phoenix AZ ............... 59

22 Flux and Difference -- 6 X 24 Rectangle .......... 61

vii



Figure

Number Page

23 Flux and Difference -- 18 X 112 Rectangle ....... 62

24 Flux and Difference -- Tf=Toa -- Minneapolis MN . 67

25 Flux and Difference -- Tf=Toa -- Medford OR ...... 67

26 Flux and Difference -- Tf=Toa -- Philadelphia PA 68

27 Flux and Difference -- Tf=Toa -- Phoenix AZ ..... 68

28 Flux and Difference -- Tf=Toa -- 45 X 45 --
Minneapolis MN ..................................... 69

29 Flux and Difference -- Td = Annual Mean Toa --
Minneapolis MN .. .................................. 71

30 Flux and Difference -- Td = Annual Mean Toa --
Medford OR ......................................... 71

31 Flux and Difference -- Td = Annual Mean Toa --
Philadelphia PA ................................... 72

32 Flux and Difference -- Td = Annual Mean Toa --
Phoenix AZ .. ...................................... 72

33 Flux and Difference -- Td = Annual Mean Toa --
45 X 45 -- Minneapolis MN ....................... 73

34 Flux and Difference -- Tb=Tia -- Minneapolis MN . 75

35 Flux and Difference -- Tb=Tia -- Medford OR ...... 75

36 Flux and Difference -- Tb=Tia -- Philadelphia PA 76

37 Flux and Difference -- Tb=Tia -- Phoenix AZ ..... 76

38 Flux and Difference -- Tb=Tia -- 45 X 45 --
Minneapolis MN ..................................... 77

39 Flux and Difference -- Run 3A ................... 84

40 Flux and Difference -- Run 3B ..................... 84

41 Flux and Difference -- Run 3C ..................... 85

42 Flux and Difference -- Run 3D ..................... 85

viii



LIST OF TABLES

Table
Number Page

1 Parameter Sets for 1A - IC ....................... 35

2 Results of Runs 1A - IC .......................... 39

3 Parameter Sets for Runs 2A - 2D .................. 40

4 Results of Runs 2A and 2B ........................ 43

5 Results of Runs 2A - 2D .......................... 48

6 Paramter Sets for Runs 1A - 1D ................. 50

7 Results of Runs lA - 1D .......................... 51

8 Results of GTF Models for Various Locations .... 60

9 Results of GTF Models for Non-square Slabs ..... 62

10 Results of Substituting Daily Average Outdoor
Air Temperature for Daily Average Ground
Surface Temperature ............................... 66

11 Resuics of Substituting Annual Average Air
Temperature for Annual Average Ground Surface
Temperature .................................... 70

12 Results of Substituting Constant Indoor Air
Temperature for Daily Average Slab Surface
Temperature ....................................... 74

13 Parameter Sets for Empirical Models .............. 80

14 Equations of Lines Fit to Empirical Data ....... 81

15 Equations of Common Lines Fit to Empirical Data 82

16 Parameter Sets Calculated Using Empirical
Equations ......................................... 83

17 Results of GTF Model Using Parameter Sets Based
on Empirical Equations ........................... 86

ix



MULTIPLE-INPUT TRANSFER FUNCTION MODEL

OF HEAT TRANSFER FROM SQUARE SLAB FLOORS

1 INTRODUCTION

Existing detailed hourly energy analysis programs such as BLAST* do

not adsq,.uately mod t-h hoat ti-ansfer between buildings and the

groa nJ. Alholugh .he monde~l of the_ building can ice very complex, the

m-,Aems of tho~ bK 1 big-ground heat transfer mechanism-; are generally

n:onqrnuns y simpn. BLAST, for example, uses a one-dimensional

resoonse factor mojel with a single monthly average ground tempera-

ture to dIefine all b)uilding-ground heat transfer. A simple model of

the qrudheat transfer compatible with both existing hourly energy

3nnlysic programns and simpler building models becomes more vital as

energy ccnnervatilun cechniques rvduce the above-ground heat loss and

bid dir-grinoheat_ transfer becomes more significant.

1>.'an d Mers[11 developed a response-coefficient meth!:dr for

multdimesionl het anduction problems which is substantially more

efficient than finite-difference or finite-element methods. Addi-

tionally, it provides a response coefficient model of the system

-which can be used with any input data which can be approximated by a

continuous, piecewise linear function. Seem [2] developed a proce-

darie forcaluit:n muwltidimensional transfer functions which elimi-

nates some of the computat ionally expensive steps of the Ceylan and

tMyers method. Th-.me, multidimensinnal methods have been applied to

strictly geometric heat conduction problems. The objective of this

study is to extend these techniques from the strictly geometric

~'rtux ":t t h nnme rica sol ution methods to the more conceptual

unv! nonLn uf simnglifiad models. Specifically, these concepts will

he appli ed tc Lho prcubl ~m of heat conduction through slab-on-grade

- :~; a 7-f' .r'>'yn'u ~ (BAt'] ) W~o, developed by USACERL and

0 >0~' Jr m t (r cansruLction projects.
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2 CONCEPT

Many physical systems, including thermodynamic systems, can

be approximated using lumped-system analysis. In this

approach the system is described as a series of lumped, lin-

ear, dynamic elements defined by ordinary differential equa-

tions. The network analogy provides a simple visualization

of this concept. In a network model of a thermal system,

temperatures are represented by nodes with a lineai tempera-

ture distribution between each pair of nodes. Physical

properties are considered to be uniform between each pair o!

nodes, but can vary from pair to pair. Energy balance equa-

tions are written for each node and the system of equations

_:lved for unknown temperatures and heat fluxes. The

validity of the system model is dependent on the accuracy of

the assumptions of uniform temperature at each node and lin-

earity between nodes.

Without defining specific geometric or environmental proper-

ties, the matrices forming the energy balance equations ot

the nodes are constructed using state space representation

resulting in the state equation

a\ (1)

and the output equation

0 = C X + C (2)

The matrix X contains the unknown temperatures (state

variables). 1 is the matrix of known temperatures (input

2



variables). Q is the matrix of fluxes (output variables).

Matrices A, B, C. an(l E are coefficient matrices. The

size of the matrices and the values of the elements will be

determined by the specific model. Once the coefficient

matrices are defined and the input values identified, the

first order differential equations can be solved. The

method of Seem [2] is used to solve the system of equations.

In this formulation, the time series of input variables is

modelled as a continuous piecewise linear function by the

equation

(+ t) ( 3 )

Using this function for the inputs, the differential

equations are solved, and substituted for X into the

equation (2) resulting in an equation relating the system

outputs to the system inputs. This equation is known as the

transfer function equation and is of the form

n I (4)
Q, (SU," - (e,Q'-j)

where

= vector of output variables (heat flux) at time i

= transfer function matrix for temperature inputs

at time j

j = designator identifying a point in time, where j=0 is the

current time, j=l is one time step prior to the current

time and so on

3



t = time of interest

6= time step

U, = vector of input variables (known temperatures)

at time i

e = scalar constant for adjusting the effect of previous

outputs on the output at the time of interest.

A transfer function is defined as the ratio of the output

variables of a system in state space to its input variables

(also in state space). In this way, the transfer function

represents the dynamics of a linear time-invariant system.

The transfer function matrices are dependent on the system

and inputs, but only on the functional form of the inputs;

therefore, any input which can be adequately modelled by the

continuous piecewise linear function noted above can be used

with the transfer function matrices to model its effect on

the system This is particularly useful in the modelling of

building systems where the input conditions of climate are

unpredictable and highly variant in time and geographic

location.

4



3 MODEL DEVELOPMENT

3.1 STRUCTURE

The system modelled for this study is a square slab-on-

grade. The model proposed is a 7 node network with 3 state

variables and 4 inputs [Figure 1].

Figure 1: 7 Node Network Model

b ~ e

D1

1 2 3

The known temperatures (or inputs) are the daily average

slab core region temperature (Ih), the daily average slab

5



edge region temperature (T,), the daily average ground sur-

face temperature (T') and the deep ground temperature (Td).

The 3 state variables, the temperatures at the remaining

nodes (7-, T2, T3), are allowed to float and consequently

have some thermal capacitance attributed to them. The tem-

perature nodes are related to each other as shown in the

figure. Between attached pairs of temperature nodes, there

exists some thermal resistance. The definition of these

resistances and capacitances is discussed in Section 3.2.

3.2 BASIC EQUATIONS

BASIC EQUATIONS Energy balance equations are written for

each node resulting in 4 state equations of the form

"l-' 1 (5)
Cat -/Y G  If (T I -T ,)

I-1

for i = 1 to 4, and 3 state output equations of the form

/(6)

Q, G,,(T- T,)
I- I

for i = 1 to 3, where

K, = thermal capacitance at node T,

S- , = inverse of the thermal resistance between

nodes /, and F,

These 7 equations can be written more conveniently in matrix

form

6



a AX (7)
- = 54X +,B1
13t

and

Q=- CA' + EU (8)

where

aT1  (9)

al

1 (10)

Q'd

7.7



- -G IG12-G I dG1 2  0(13)

Cl C

AIt2. -C 2e G 12 - G 23 G 2d G23

C C2  C 2

0 G23 -G31G23- 3d

(C; I (14)

(-, C.

= 0 0 C2d G 2e

C 2  C2

oo
G31 ('

00

C C3 C 3 ,

0 (5

0 0 

0 b C
S= G Id (I 2d G 3(1

E) G3 -( /- Gel 0 Get

=0 0 -G Id-G2d -G3d 0

G,,, C , 0 -Cb - C-/- G2.)

The coefficient matrices 1, 2B, C, and D define the

relationships of all temperature regions in the system to

all others. They involve geometric factors such as the area

through which heat is transferred from one region to

another, and physical properties such as the density and

thermal conductivity of various regions. The goal of

defining the elements of the coefficient matrices is to make

it possible to generate transfer function equations for any

system from its basic physical parameters rather than as is

frequently done in electro-mechanical systems - by testing

8



the system itself. Because the important aspect of the

equations is the thermal relationships between regions, the

model is not strictly geometric.

The first step in defining the matrix coefficients is iden-

tifying the properties which make up the elements of G and

C. The basic form allows for the description of several

heat transfer mechanisms given the appropriate temperatures.

For conduction, the equation becomes

3 (17)

or, in the spatially discretized form used for this model

(kIA/,,I, (T - (18)

k,4In this case G, is defined as the conductance, -, where

k,l = thermal conductivity applicable to the volume

between nodes i and j

= cross-sectional area through which heat is trans-

ferred between nodes i and j

L" = distance between nodes i and j.

Although this model does not contain convective or radiative

heat transfer, these mechanisms can be supported by the

model by setting

9



G = IA (19)

for convective heat transfer, and

G =hr A (20)

for radiative heat transfer, where

h convective heat transfer coefficient

and

hr the effective linearized radiative heat transfer

coefficient.

The thermal capacitance C is derived from the transient

equation

Q T (21)

so that

C = CPi 1" (22)

where

p, density of the region of soil at T,

= specific heat of the region of soil at T,

I, volume of the region of soil at T,.

10



Both thermal conductance, G,, and thermal capacitance, C,,

are composed of geometric factors (L,, Ai,, and V,) as well

as soil properties (k,,, pi, and cr,). These will be dis-

cussed separately.

3.3 GEOMETRY

Bahnfleth's study of undisturbed ground temperature patterns

[3] shows two distinctly different zones of temperature

fluctuation: a relatively fast zone near the ground surface

where the temperature changes are in scale with the tempera-

ture changes of the forcing temperature, and a slower zone

where temperature fluctuations are strongly damped. Because

the response rate of the near-surface zone is more similar

to the response rate of typical building components than to

that of the remainder of the earth, it was decided to model

the near-surface earth and the remainder of the earth as

attached but distinct components. The point of separation

of these zones is the diurnal penetration depth, or roughly

0.5 meters below the surface. The temperature at this point

remains nearly constant over a day at the daily average

ground surface temperature.

Horizontal maps of ground temperature beneath buildings show

a circular pattern, consequently, a cylindrical coordinate

system was used to produce an axisymmetric two-dimensional

model. Horizontal temperature nodes are set at the slab

center, the edge-equivalent radius, and the location where

the ground temperature is unaffected by the building (far-

field). The edge-equivalent radius is calculated as the

radius of a circle of equivalent slab perimeter, or

11



P (23)
r , 211

In this fashion, a 10m by 10m slab is mapped to a circle of

radius

10 (24)r . . ..6.37mn
" 2n

Vertical temperature nodes are set at the diurnal penetra-

tion depth of the surface temperature wave (approximately

u.5m below the surface), the annual penetration depth

(approximately 15m below the surface) and the depth of the

point of inflection or knee of the undisturbed temperature

profile (approximately 4m below the surface). Studies ([3],

[4], [5]) of underground temperature patterns show a shape

which could be approximated by linear temperature profiles

between these temperature nodes (Figure 2).

The area-equivalent radius is used for calculations in the

vertical plane. It is calculated as the radius of the

circle which has the same area as the slab, i.e.

\1 .FL (25)

Therefore, for calculations in the vertical direction, the

10m by 10m slab is mapped to a circle of radius

i10O (26)
.6
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so that area is preserved.

Figure 2: Undisturbed Ground Temperature Profile

0

Jan 21 Jul21
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e
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Although this model cannot be reproduced graphically, it

accounts for both the perimeter and area effects of ground-

coupled heat transfer.

These geometric relationships were used to build the geomet-

ric matrices which were used, in turn, to develop the coef-

ficient matrices.
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Three matrices constitute the geometric factors of the

I, L. and V. Matrix I is the symmetric 7 x 7 matrix

*']K / 2 "l ]"b A '1 d (27)

" 12  . 1 A b "121 12d A

A i 1 'J .133 '13b '1 3d e
' I b , 2b "' 31, bb '"' b/ 3d be

--I I /1 2f .:131 1b I f f ' 3 ' d ,,

I d 2d :31 d I 'd 1 d do

I ?e J,' b, 1, Oe

where the subscripts refer to the path, that is, .,A,, is the

area through which heat is transferred from T, to 7-T.

Matrix I is a similar symmetric 7 x 7 matrix:

'1I 112 / 1: /l b lf I d lo (28)

/ 1, 122 L2 3  L.2 2 f Ld L20
1.-: 1.3< 1,3:j L/'3b 13f .3 d} L3e

L
=  'lb I L3 b  L. b  "bI Lbd .be

L[ " f [ ,' 2 1 [ 3 f , 1 1 .! t L f, j / if ,

(1 I ",, I - Id I) ( ,d L t I. ,,,,

I,/ /o 32 ' , 'b, 1  13, .v

For the 7 node network model, not all of the nodes are

connected, therefore the elements which relate unconnected

nodes to each other become 0 leaving

14



o A I O 1 b /) Id O (29)
A 12 0 /12:1 0 0 A2 '2

0 A 23  0 0 A3 1 A 3 d 0

A1i b 0 0 ) ) 0 A be

0 0 A/ 0 0 0 A fe

A 1c A 2d A 3d 0 0 0 0

0 A 2, 0 /1 be A te 0 0

and

0 12, 0 LI b 0 '. 1d 0 (30)

L 12  0 L-23 0 0 L2 d 1.2,

0 123 0 0 L3 f L 3 d 0

!= LIh 0 0 0 0 0 L be

0 0 L31  ) 0 0 Lie

L Id L d L3 d 0 0 0 0

C) L 7, 0 1-b L 0 0

t' is the vector

The definition of the elements, or network parameters,

"I,. /.,,. ai(] t', is, in part, independent of the model

structure, but is based on the geometry presented above and

is described further in Section 4.
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3.4 SOIL PROPERTIES

Soil properties are represented by another 7 x 7 symmetric

matrix:

o A12  0 k I 0 k 1,1 0 (32)

A- 2 0 k0, 0 0 2,j k

o &'211  (0 0 A'' , 1 0

k 0 0 ( ) 0 A ,.

o o k,,. 0 0 0 k

() A. () A0, K, 0

and two vectors,

(f): t) (33)

and

(Cp,, C1, ',, )* (34)

Thermal properties of the soil can be defined separately for

each energy balance equation. Individually, these equations

assume constant thermal properties. Consequently, the

properties are defined as the "effective" value of the

thermal properties in the region specified by the equation.

The need for an "effective" conductivity is described more

thoroughly in Bahnfleth [3]. Effective conductivity is

defined as

' , (35)

16



where

Ik = the thickness of layer k, and

kk = the conductivity of layer k.

Calculated from this equation, k,, is the effective value of

the soil conductivity in the region through which heat

transfers between T, ariI T I.

3.5 INPUTS

The inputs to the transfer function equation are (referring

to Figure 1) the temperatures of the slab core area (7") and

the slab edge area (T,), and the undisturbed ground tempera-

tures near the surface (T/) and in the deep ground (Td).

Because the "top" nodes are defined at the diurnal

penetration depth, their temperatures can be approximated by

the daily average of the surface temperature, i.e. 7, = the

daily average slab center temperature and Tf = the daily

average ground surface temperature. The undisturbed ground

surface and deep ground temperatures can be determined a

priori using a variety of algorithms.

17



4 NETWORK PARAMETER SPECIFICATION

4.1 METHOD

The network parameters are the elements which compose the

geometric matrices :A, 1., and [. Their definition depends

on the method of discretizing the geometry of the system. In

other words, the magnitude of the element is dependent on

the sizes of the regions assumed to be at the specified

temperatures. Because few of the regions are actually iso-

thermal, the allocation of area and volume to a specific

temperature must be based on some method or algorithm.

In order to evaluate the validity of the postulated network

parameters a test system which fixes input conditions and

environmental parameters was established. A base case using

the same fixed conditions was used to compare both the total

flux data and the form of the daily average flux curve.

This provided not only data on the accuracy of the model but

also clues to the nature of any inaccuracies that might

occur.

4.2 BASE CASE

The baseline for evaluation of the model is a detailed

finite difference model (FDM) of heat transfer from slab

floors developed by Bahnfleth [3]. A three-dimensional

model of a slab-on-grade and the soil beneath it is solved

by numerical techniques in the program SLAB3D. The space

above the slab is defined by a constant room air tempera-

ture. Undisturbed soil temperature distributions as calcu-

lated from subroutine TEARTH are used as the far-field

18



boundary temperatures. The deep ground boundary can be

either a specified flux or a specified temperature plane.

Bahnfleth generated data for a variety of surface shapes and

sizes as well as a number of diverse climatic conditions.

4.3 DESCRIPTION OF TEST SYSTEM

4.3.1 GEOMETRY

Because the model was developed based on a square slab-on-

grade, the development of the network parameters was based

on this geometry. Base case data were available for two

sizes of square slabs, a 12m x 12m square and a 45m x 45m

square. The flux per unit area calculated by the finite

difference model for these two slabs for a calendar year in

Minneapolis MN is shown in Figure 3. Due to the dominance

of the edge effect in the smaller slab, the annual flux

variation is much greater for the smaller slab. If the

effect of the balance between the perimeter loss and edge

loss is to be accommodated, it is important that the test

system strongly exhibits this effect. Consequently, the

smaller 12m x 12m slab was used as the primary cest system.

Figure 3: FDM of Two Square Slabs
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4.3.2 SOIL PROPERTIES

Although the system model can support variable soil proper-

ties, this capability is not tested in this study. Avail-

able base case heat flux data were calculated using constant

soil properties. The same properties are used in this

study. They are:

p= 1200 kg/lnt3

cP = 1200 ilkg/K

k= 1.00 vlnlK

4.3.3 INPUTS

For this study, existing data from Bahnfleth's one-

dimensional semi-infinite solid model of the heat transfer

in undisturbed earth [3] were used to provide input data for

the nodes at the far-field and the deep ground. The hourly

ground surface temperatures calculated by this model vary

with local climatic conditions while the deep ground temper-

ature is constant at the annual average ground surface tem-

perature. Because the far-field node is placed at the

diurnal penetration depth, the daily average ground surface

temperature rather than the hourly ground surface tempera-

ture is used as input to the multiple input transfer func-

tion model.
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Exact data for the daily average slab center and slab edge

temperatures were not available from the base case data set.

This is the usual case with most energy analysis programs.

Therefore, although it is possible in the network mode to

include a temperature difference between the slab center and

the slab edge, daily average slab surface temperatures

(which are equal to the ground temperature at the diurnal

penetration depth) were used for both these temperatures.

The network parameters developed using the assumption of an

isothermal slab should be appropriate for use with energy

analysis programs, such as BLAST and DOE-2 which use the

same assumption.

Data were available from the base case data set for four

locations, Minneapolis MN, Medford OR, Philadelphia PA, and

Phoenix AZ. These data were generated originally from Typi-

cal Meteorological Year (TMY) weather data for these sites.

Figures 4, 5, 6, 7 show the daily average air temperatures

at these four locations.

In order to develop the most responsive model network param-

eters, the most rigorous weather conditions were used. The

figures indicate that the weather data for Minneapolis MN

would provide the most demanding conditions for the model.

In addition to a large annual temperature variation, the

temperature variation from day to day is also larger in the

Minneapolis data than in that of the other three locations.

During the development of the network parameters, therefore,

the data derived using Minneapolis weather were utilized to

evaluate the accuracy of the model fit. The model was then

tested later at the remaining three locations.
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Figure 4: Daily Average Air Temperature -- Minneapolis MN
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Figure 5: Daily Average Air Temperature -- Medford OR
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Figure 6: Daily Average Air Temperature -- Philadelphia PA
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Figure 7: Daily Average Air Temperature -- Phoenix AZ
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4.4 GEOMETRIC DEFINITION OF NETWORK PARAMETERS

The geometric definition of the network parameters is based

on a series of assumptions about the size and shape of the

temperature regions beneath the slab as well as the geometry

of the slab itself. The geometry of the slab and the ground

in the vicinity of the slab is the foundation for these

assumptions. For the test system, the slab geometry is

defined by

= 12 = 1 4n 2  (36)

P = J.A 12 ,181n

a = -=6.YY ii
/ Tf

PS
r p=- = 7.6-4r1

The ground geometry has already been fixed by the network

model [see Figure 1].

The elements I, of the matrix 1. can then be assigned as the

distance between nodes i and j, that is,

/ 0 12 0 'lb 0 L Id 0 (37)

112 0 L23  0 0 1 2d L 2 e

0 L23 0 0 L1  L 3d 0

I. = l1b 0 0 0 0 0 Lb,

0 0 / 0 0 0 L fe

SI,, /2d l,3t 0 0 0 0o0 i o 1 /4 0 0
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Referring to Figure 1, note that

L Ib = -2e = L 3 1 = D 1 (38)

LId= L 2 (=1ad=D 2  (39)

Le =123 =D3 (40)

and

L be L 12 =1p . (4 1 )

Substituting DI. D 2, D., and rp into L,

0 rP 0 D, 0 D2  0 (42)

rp 0 D 3  0 0 D 2 DI

0 D 3  0 0 DI D 2  0

L= D, 0 0 0 0 0 rp

0 0 D, 0 0 0 D 3

D 2 D2 D 2  0 0 0 0

0 D, 0 rp D 3  0 0

The elements of /1 are defined as the area through which

heat is transferred between I, and /'/,

0 A 12  0 AIb 0 Ald 0 (43)

/12 0 A 2 3  0 0 A 2d A 2 e

0 A23 0 0 A31 Aad 0

/I )1 b 0 0 0 0 0 Abe

0 0 A/1 0 0 0 Ale

' 'Id A2d /13d 0 0 0

0 A 2, 0 "1 b ,1 le 0 0
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The determination of the elements of /I is more complex than

the determination of the elements of L. Although the model

is not strictly geometric, the heat transfer areas can be

initially postulated based on geometric considerations.

First, it is assumed that A lb= A Id A 2 =A 2d, and A31=.ad.

Then the area through which heat is transferred between

Tb and T, can be estimated by the area of the slab which

can be approximated by the daily average slab surfaze center

temperature, Tb. Studies [3],[4], and [5] have shown that

temperature gradients across horizontal ground-contact sur-

faces are small over most of the surface and relatively

large near the edge. For this model the area in the plane

of the ground surface considered to be at Tb is the area of

the slab minus the area near the slab edge, or

'lIb= AId if( r-d 1 )2  (44)

where d, is the distance from the slab edge to the location

where the slab surface temperature is approximately Tb.

The area through which heat is transferred between

T, arid T, can be defined as the area where the edge effect

predominates. This area is specified as the area within a

definable distance, d2 of the building edge minus the area

already associated with Tb, or

- .= ' = ( ( )2 1 b (45)

where cI, is the distance the edge effect region extends

beyond the slab edge.
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The remaining area is associated with the far-field tempera-

ture, T/. It is calculated from the equation,

A3 = Aa V = (ra+ I))2- A b - Aa (46)

where D3 is the distance from the edge of the slab to the

undisturbed ground in the far-field, or 12.5m [3].

The area through which heat is transferred between

/0 anrid T, is calculated from the Fourier equation for con-

duction through a hollow cylinder

(201h (47)
Q=k A7T.

By the convention of the matrix definition, all equations

are cast in the general form

_ ,t ( . l "(48)

Therefore,

(49)
k , A / -lQ e l = 1'/

so that
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20h 2itL2 2 Ao/ (50)

In - In L!IL., Lel
rLb.

and,

I 2 0l2L. 1 _ 2 n(D 1 )(D 3 ) (51)

n Lb* - In --Lb. r ,

Similarly,

21[L 2 ,,L 2 3  2n(D 2 )(D 3 ) (52)
23 Lb * L23  r " D :

1 12 r p

It is postulated that the slab is isothermal to within c, of

the slab edge. It is therefore estimated that the area

through which heat is transferred between 7'b and T, can

also be calculated correspondingly:

)11lb((t) 2 1( l) )(d j) (53 )

bo Lb

Lb.-d I r p -d1

Again, ,'12 is calculated in a similar fashion:

T2 rL ,d(cI) 2 1r(l) 2 )(d 1 ) (54)
/| 12 ' P

L 12
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The volumes associated with temperatures TI, T2,and T 3 are

calculated by

1/'= ,4,bh'l (55)

12 = ilh 212 A 2

an d

13 = / it,/hj

) . D2 , and i):j are defined by temperature profiles of the

undisturbed ground and do not change with slab size or

shape. Referencing Section 3.3 and Figure 2, D , is the

distance between the inflection point and the diurnal

penetration depth or,

D, = 4.Om - 0.5m = 3.3n. (56)

02 is the distance between the undisturbed deep ground and

the inflection point or,

D 2 = 15in - 41n = 1 lm (57)

and Di is the distance from the edge of the slab to

undisturbed ground temperature in the vertical plane,

D 3  = 12.5mn. (58)

I I, 112, a hd h3 are assumed to be equal to each other and

equal to half of the depth of the entire system:

I =h2 h.,= l '/2 = Y.2'11. (59)
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The results of Bahnfleth [3] show that for rectangular

slabs, surface temperature is nearly constant to within l.om

of the edge regardless of slab size or aspect ratio. Based

on these data d, is assigned the value of 1.0m.

In the edge effect region, the direction of heat flux

changes dramatically over the year. Temperature profiles

developed by Bahnfleth [3], and Kusuda [5] show that in the

region between the slab edge and roughly 3m outside the

building edge, the direction of heat flux varies dramati-

cally over the annual cycle. It is desirable that this

region be distinguished from the regions where the heat flux

patterns are more consistent over the annual cycle. There-

fore, this region is characterized as the edge region and

its area (in the plane of the ground surface), -42, is

encircled by a boundary approximately 3.Om beyond the edge

of the slab. Therefore, (1, is assigned the value of 3.0m.

For the test system, I. becomes

( 0 Y.64 0 3.5 0 11 0 (60)
7.64 0 12.5 0 0 11 3.5

0 12.5 0 0 3.5 11 0

()3.1 0 0 0 0 0 7.64

0 0 3.5 0 0 0 12.5
I1 11 it 0 0 0 0

0 13.5) 0 7.64 12.5 0 0

Substituting /,,, ,,, r,, (1, aid d?2 into the area equations

and introducing the values into the matrix I gives
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f 0 492.6 0 1041.6 0 104.6 0 (61)
492.6 0 891.2 0 0 195.3 195.3

0 891.2 0 0 866.7 866.7 0

A= 104.6 0 0 0 0 0 156.7

0 0 866./ 0 0 0 283.6
104.6 195.3 866.7 0 0 0 0

0 19b.3 0 156.7 283.6 0 0

The volume vector then becomes

7 /b8'\ (62)
V=(1416) M3~

\628,4.,

4.4.1 MULTIPLE-INPUT TRANSFER FUNCTION COEFFICIENTS

Program GTF [see Appendix C] calculates the multiple-input

ground transfer function (GTF) coefficients and scalar con-

stants from the model structure and geometry and soil prop-

erties using the method of Seem. The GTF coefficients and

scalar constants calculated for the test system with the

geometric network parameters are:

4,3519192373e006 3.9049689583e 003 9 7034921495.002 1.7727765309o006 (63)
3.9055744470@ -003 - 2.3330414785#- 007 13.040 137,54508 -009 1.960) 062778a 006
9.7034921516e - 002 8.0401375444@ - 003 9.1597479408# 006 1.81 15962474e-003

1 772''6b309. @ 006 1.9601062778e.006 1.8 15962471 P-003 8.54802066718#006

I 1291329802# -007 .1.2782186309:-002 9.5-1201416 14: 002 - .2814397560* 006\

.2780 180377e -002 6.956564823. - 007 7.9063398134g -003 -5.839530
7
500@ - 006

9 5 1201 1708# -002 - 7.90633981 1
7 

P-00
3  

2.72956698020 0-7 - 1.78144906930-003

S 28I4397560e•006 5.8395301500- 006 1.
7
814490682e-003 2.5477632842e-007 /

C l 288,351382P007 4.2601071706e.002 -9.6828188233:-002 5.2447951733@-006
12602873134@-002 6.9123847927 .0O7 -8,0230577225 -003 5.7990 140632@ - 006

" 9,6828788170. -002 8.02
3
0
5
77242#. 003 2.I 13081293" 007 -1,807747R356e-.003

, 244795) 733P,-006 b, 1990 110632.006 1.80774,'8367@. 003 -2.5312101370. 007J

I 126,79401162:-006 3 8572502888: 003 9 i226178703:.002 - .7361314679@-006\
38566553031 003 2.28916906p00/ / 890318 1166 .003 I9195889092p, 006
95226718682*-002 7 89031811/lie 003 8.97/1S80017e- 006 1.7778390733P-003 J
i 7361314679@.006 - 1.9195889092P-006 1.7778390736@.003 8.3824877947#-006 /

31



c =-2.9Y921 (64)

e 2 = 2.9585 I

e3 = - 0.9Y3 2 9.

4.4.2 INITIAL HEAT FLUX CALCULATIONS USING MULTIPLE INPUT

TRANSFER FUNCTIONS

Program QCALC (see Appendix C) uses the GTFs and the input

temperatures with Equation (5) to calculate the daily aver-

age heat flux. The results are divided by the slab area in

order to be compatible in units with the base case data.

Figure 8 shows the flux plot of the GTF model vs the finite

diffe-rence model. Figure 9 plots the daily average flux of

the GTF model and its difference from the FDM. Although

annual period of the flux curve appears nearly correct, its

amplitude is much too small. Because the magnitude of the

maximum flux is fairly accurate, it is likely that the pri-

mary cause of the error is the assumption of too much mass

in the system. The network parameters were based on the

assumption that the mass associated with the system is ccm-

posed of three cylinders of equal depth with cross-sectional

areas equal to the area through which heat is transferred

vertically in their respective regions. The resulting vol-

ume vector (Equation (62)) heavily weights the system mass

with the far-field undisturbed ground temperature. The

result is that the mass of soil directly beneath the slab

has the least effect. This is obviously incorrect. Various

changes to the model were introduced to improve its behav-

ior. These are discussed in Section 4.5.
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Figure 8: Flux -- FDM and Run 1A
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Figure 9: Flux and Difference -- Run 1A
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4.5 PARAMETER REFIh2MENT USING EMPIRICAL METHODS

4.5.1 MODEL BASED ON 12m X 12m SLAB

The effect of soil volume on the shape of the annual flux

curve, although evident, is not easily described by geomet-

ric techniques. It may be possible to improve the accuracy

of the model, particularly in cases where the daily average

flux per unit area is small, by adjusting the model parame-

ters based on improved fit to the base case data.

The original parameter set based on system geometry showed

an excess of thermal mass in the system. Therefore, the

volume vector was revised by reducing the depth of the cyl-

inders of mass associated with 1'2 arid l':3 to im from 7.25m

while leaving the mass associated with [,' intact. The

volume vector then became

I',= 19b5 1
3

The remaining parameters were held the same as the original

run. Table 1 Run lB presents the parameter set.

Program GTF was rerun with this new set of parameters and

the results are shown in Figures 10 and 11.
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TFable 1: Parameter Sets for Runs IA - IC

RUN IA RUN 1B RUN iC

AREA [iM2 ] 144 144 144

PERIMETER [m] 48 48 48

A/P [n] 3.0 3.0 3.0

Ale 157 157 157

A 12  493 493 493

Abe 284 284 284

A2 :3 891 891 891

I b " I d 105 105 105

A 2d = ,2e 195 195 195

A31 A3d  867 867 867

Vi 758 758 758

V 2  1416 195 195

13 6284 867 87
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Figure 10: Flux -- FDM and Run lB
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Figure 11: Flux and Difference -- Run lB
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Figure 10 plots the daily average heat flux over the cycle

for the base case FDM and the GTF Run lB. Comparison with

Figure 8 shows the substantial improvement in fit. Figure

11 shows the flux and the difference from the FDM results of

Run lB. Comparing Figure 9 with Figure 11 it can be seen

that model lB vastly reduces the model error in the summer-

time data.

The new set of parameters leads to a better match of the

base case data from which it can be inferred that the pri-

mary flaw in the original parameter set was indeed an excess

of mass. Even though the revised set of parameters is

substantially better than the original set, the figures

indicate that more improvement is required. The annual

amplitude of the curve is still slightly too small and the

new set of parameters presents a new flaw in the model: the

flux calculated for the end of the year becomes increasingly

too small. This seems to indicate an imbalance in the mass

distribution. The first step towards resolving this situa-

tion was to reduce the mass associated with the far-field

region in an effort to both reduce the total mass of the

system and place more emphasis on the mass immediately

beneath the slab. The depth of the cylinder of mass asso-

ciated with the far-field (h3) was reduced from Im to 0.1 m.

resulting in the new volume vector

758)m (66)

V=195 Ji 3

871

Once again, the remaining network parameters were held the

same as the original run (see Table 1 Run 1C).
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The new GTFs and scalar constants were used to recalculate

the daily average heat flux. The resulting flux and differ-

e.ice plots are given in Figures 12 and 13. On a plot of the

daily average flux (Figure 12) Run IC and the FDM are

practically indistinguishable. Figure 13 presents the flux

calculated in Run 1C and the difference between Run 1C and

the FDM. Except for a few points early in the annual cycle

when the flux is high, the difference between Run 1C and the

FDM is less than 1 W/m^2.

The match between the FDM and Run 1C is significantly better

than both Run la and Run lb. Table 2 gives a numerical

comparison of the three GTF models with the base case finite

difference model. It can be seen that 90% of the data were

within 15% of the FDM and the percent error in total energy

consumption over the annual cycle is -1.0%.

Figure 12: Flux -- FDM and Run 1C
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Figure 13: Flux and Difference Run 1C
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Table 2: Results of Runs 1A 1 C

MODEL MEAN SUM OF %OF TOTAL %ERROR TOTAL

FLUX SQUARED DATA ANNUAL IN ANNUAL

[W/m1'2) DIFF WITHIN ENERGY TOTAL DIFF IN

15% OF CONSUMP ENERGY ENERGY

FDM [%] CONSUMP CONSUMP

FDM 6.10-------------------7716.9--------

RUN 1A 8.10 2149.2 37 10194.4 24.3 +2477.5

RN 1B 6.35 214.2 64 7984.4 3.4 +267.5

RUN 1C 6.07 69.9 90 7641.4 -1.0 -75.
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4.5.2 MODEL CORRECTIONS BASED ON 45m X 45m SLAB

Using the same parameter equations as Run 1C, changing only

r and r,, the GTFs and scalar constants were recalculated

for the larger (45m x 45m) slab. The resulting parameter

set is shown in the column labeled Run 2A in Table 3.

Table 3: Parameter Sets for Runs 2A - 2D

RUN 2A RUN 2B RUN 2C RUN 2D

,IREA [m 2] 2025 2025 2025 2025

PERIMETER [m] 180 180 180 180

A/P [m] 11.25 11.25 11.25 11.25

/ 619 619 1113 1113

12  1945 1945 1945 1945

Abe 759 759 1113 1113

2 3 2386 2386 3499 3499

A I= A 1869 1869 1869 1869

A 2(j 12 e  663 2349 663 879

A31=A 3d 1978 293 1978 1762

V1 13548 13548 13548 13548

V 2  663 2349 663 879

1 / 3 198 29 198 176

Figure 14 compares the output for the 45m x 45m slab of the

GTF model and the FDM base case.
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Figure 14: Flux and Difference -- Run 2A
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There is a distinct droop of the GTF during the winter sea-

son, the time when the edge effect is strongest. During the

summer season when the edge effect is small, the GTF model

is quite accurate. This suggests that for larger slabs the

method for calculating the parameter set does not account

adequately for the edge effect. Returning to the original

energy balance on the edge node

kbA be k 2 AT k feA T- (67)

Lb ("-Tb) + (Te T)=Qe

and recalling that for this study T,= Tb, we see that there

are three likely causes for underprediction of eege loss.

The first possibility is that A 20 is too small so that loss

to the ground beneath the edge is underpredicted. An

adjustment to A 2. should produce a generally linear change

in the flux, although the seasonal change of T 2 will modify
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that effect to some extent. The second possibility is that

the area At. is too small so that heat flux directly to the

ground surface is insdfficient. Thirdly, the temperature

node T 2 may be too high. This is most likely to result from

a deficient A 23 which would lead to a reduction in the heat

transferred from the node beneath the slab edge (node 2) to

the node at 4 meters depth in the far-field (node 3) thereby

maintaining an inappropriately elevated T 2.

Two studies were performed in order to determine the most

likely cause of the underprediction of edge loss in the

larger slab. The first investigates the effects of increas-

ing 12.. The second explores the possibility of improving

the model Zit by increasing A23 and A,0.

Inspection of the parameter sets shows that in parameter set

1 (used for the smaller slab) the area through which heat is

transferred directly from the slab core to the earth (Alb)

is nearly half the area through which heat is transferred

directly from the slab edge to the earth (A 2,). In parame-

ter set 2, however, the trend is reversed so that A16 is

nearly three times 1 2b. While it is anticipated that the

effect of the core area would increase as the slab becomes

larger, this dramatic change seems excessive, a notion which

is reinforced by the apparent underprediction of the edge

effect from parameter set 1. A possible source of error is

the determination of the distance the edge effect extends

beyond the slab edge (d2). It is interesting to note that

this distance is equal to the characteristic length (A) of

the smaller slab. It is postulated, therefore, that d 2

should be defined by the slab characteristic length rather

than by a constant. A new set of parameters (see Run 2B in

Table 3) is established based on this theory. The daily
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average flux calculated by this new set of parameters and

the difference from the FDM are shown in Figure 15. The

curve shows a better fit of the data particularly during the

winter season when the flux is highest. Examination of the

difference between the FDM and GTF Run 2B, however, shows

that the model still demonstrates a systematic seasonal

error. Comparing Figure 14 and Figure 15, it can be seen

that increasing A 2. has produced a linear increase in the

heat flux throughout the annual cycle. Nonetheless, the

model is reasonably accurate over the annual cycle giving an

error of 3.6% in total annual energy loss. Table 4 gives a

numerical comparison of GTF models 2A and 2B with the base

case FDM.

Table 4: Results of Runs 2A and 2B

MODEL MEAN SUM OF % OF TOTAL % ERROR TOTAL

FLUX SQUARED DATA ANNUAL IN ANNUAL

[W/m^2] DIFF WITHIN ENERGY TOTAL DIFF IN

15% OF CONSUMP ENERGY ENERGY

FDM [%] CONSUMP CONSUMP

[%]
FDM 2.50 ------------- 44167.7---------------

RUN 2A 2.03 106.9 33 35911.3 -18.7 -8256.4

RUN 2B 2.59 54.0 64 45762.0 +3.6 +1594.3
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Figure 15: Flux and Difference -- Run 2B
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,'I and A,, are geometrically similar (see eqns 51 and 52).

The correction is made originally on A 23 because the T2-

A2 3-T3 system is more stable than the Te-Afe-Tf system. The

correction is then applied to both A23 and Afe. The

determination of the corrected A 23 is based on the assump-

tion of a functional relationship between A 23 and the slab

characteristic length. Characteristic length is discussed

in more detail in Section 6. A 23 is calculated from the

equation

A 23 = 2 ir(, 1 ,,, L2 d (68)

Assuming that /1,-=891M 2 is correct for the small slab

A 2 3 = 891 = 2tr LquiL 2d = 2it requv( ] 1) (69)
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so that

_ 891 13 (70)

21t( I I )

If -qu is assumed to be a simple function of characteristic

length, a functional relationship can be postulated. Sup-

pose

r ,u,,= K*(chctirctoristc length) (71)

The characteristic length (A/P) of the small slab is 3.0m.

So, from Equations (70) and (71),

r equ,; = 13= K*3.0 (72)

so that K is approximately equal to 4.5. Then, using

Equation (71), Equation (68) becomes

/13 = 2 2Ld(4. t )(cha( rcz c tristic length). (73)

Similarly,

/1A =2 1 /. e( 4.L3)(c h ura c t eristic length). (74)

The parameter set for Run 2C is given in Table 3. GTFs and

daily average heat fluxes are recalculated with the new A 23

and Aef. The numerical comparison of Run 2C to the FDM and

Runs 2A and 2B is tabulated in Table 5. Run 2C shows a

significantly improved fit to the FDM data as evidenced by

the substantial decrease in the sum of squared difference

and the percentage of the GTF data within 15% of the FDM
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data. Unfortunately, this improvement in fit was accompa-

nied by an increase in the total error over the annual

cycle. Examination of the plot of the difference between

the results of RUN 2C and the base case FDM (Figure 16)

shows that the wintertime droop has been corrected, but

there is still a linear underprediction of slab loss.

Figure 16: Flux and Difference -- Run 2C
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It was demonstrated by Run 2B that such an error might be

corrected by an adjustment of A 2., however, an adjustment of

the magnitude of 2B is unnecessary. Once again, a possible

source of error is the determination of the distance that

the edge effect extends beyond the slab edge (d2). If d2 is

assumed to be a function of slab characteristic length of

the form

( = c+ r' (chitr(ictoristic tength) (75)
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then c and m can be chosen so that d 2 varies with slab

geometry. Based on the results of the small slab, c is

probably less than 3.0 and m less than 1.0. If c is assumed

to be 2.5m then m can be calculated from the model of the

12m x 12m slab.

3.0 = 2.5 + n(3.0) (76)

which gives

3.0-2.5 (77)
mn =

3.0

which is approximately equal to 0.15. When the equation

d2 =2.5+0.1(characteris'.c length) (78)

is applied the new values of d2 become:

for the smaller slab

c 2=2.95 (79)

and for the larger slab

d2 =4.19 (80)

The parameter set is recalculated and given in Table 3, Run

1D. When this change is made in the calculations for the

larger slab the result is a significantly improved fit to

the FDM base case. The flux and difference curves are shown

in Figure 17. As expected, the difference curve has shifted

linearly, moving nearer to the zero difference line. The
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numerical comparisons are given in Table 5. The quality of

the fit (as measured by the sum of squared difference and

percentage of data within 15% of the FDM) is improved as is

the total energy consumption.

Figure 17: Flux and Difference -- Run 2D
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Table 5: Results of Runs 2A - 2D

MODEL MEAN SUM OF % OF TOTAL % ERROR TOTAL

FLUX SQUARED DATA ANNUAL IN ANNUAL

[W/m2] DIFF WITHIN ENERGY TOTAL DIFF IN

15% OF CONSUMP ENERGY ENERGY

FDM [%] CONSUMP CONSUMP
____ ___ ____ ___ ____ ___ [%]

FDM 2.50 ------------- 44167.7--------------

RUN 2A 2.03 106.9 33 35911.3 -18.7 -8256.4

RUN 2B 2.59 54.0 64 45762.0 +3.6 +1594.3

RUN 2C 2.31 19.9 83 40780.2 -7.7 -3387.5

RUN 2D 2.42 8.1 97 42872.2 -2.9 -1295.5

4.5.3 CORRECTED MODEL APPLIED TO 12m X 12m SLAB

Because the modifications have changed the functional rela-

tionships which effect the original parameter set, it is

necessary to recalculate the parameter set for the smaller

slab and recalculate the daily average fluxes as Run 1D. A

comparison of the parameter sets of Runs 1A-1D is given in

Table 6 and the results in Table 7. The quality of the fit

as determined by the sum of squared difference is slightly

degraded by the changes made for Run 1D. Nonetheless, the

improvement of the fit of the model to the data for the

larger slab more than justifies the change.

49



Table 6: Parameter Sets for Runs 1A - ID

RUN 1A RUN lB RUN IC RUN ID

AREA [m 2  144 144 144 144

PERIMETER [m] 48 48 48 48

A/P [m] 3.0 3.0 3.0 3.0

A/e 157 157 297 297

I2 493 493 493 493

/ h, "84 204 284 297

A 23 891 891 891 933

,1 1 =b A Id 105 105 105 105

.12> d = A 2, 195 195 195 192

/13t= /3d 867 867 867 870

I'l 758 758 758 758

12 1416 195 195 192

3 6284 867 87 87
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Table 7 Results of Runs 1A - 1D

MODEL MEAN SUM OF % OF TOTAL % ERROR TOTAL

FLUX SQUARED DATA ANNUAL IN ANNUAL

[W/m-2] DIFF WITHIN ENERGY TOTAL DIFF IN

15% OF CONSUMP ENERGY ENERGY

FDM [%] CONSUMP CONSUMP

[%]

FDM 6.13 -------------- 7716.9- --------------

RUN 1A 8.10 2149.2 37 10194.4 24.3 +2477.5

RUN lB 6.35 214.2 64 7984.4 3.4 +267.5

RUN 1C 6.07 69.9 90 7641.4 -1.0 -75.5

RUN 1D 6.19 82.0 89 7786.6 +0.9 +69.1
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5 FINAL DEFINITION AND TESTING

5.1 FINAL DEFINITION

The model used for Runs 1D and 2D gives excellent results

for both the 12m x 12m square slab and the 45m x 45m square

slab. The parameter sets generated for both these runs were

constructed from the same series of equations developed

using both geometric and empirical methods. The equations

are repeated here in their final forms.

D, 4.Orn - 0.5 n = 3.5m. (81)

? - 4117 = J Im (82)

D 3 = i2.3M (83)

(I = 1.On (84)

d2=2 .,5 + 0. i, (characteristic length) (85)

DI + D 2  (86)h11 - -7.2Smr.
2

/i? = 1 .0; (87)

:3 = 0. 1 In (88)

/,, = 2P 3 D= (89)

I. = 1 .d :, 2D (90)

Lle L -3= 0:1. (91)
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p (92)
rp=2]

A(93)

21t(D I )(d 1 ) (94)

rp-d I

Aei= 2nL2 ,(4.5)(characteristic length) (95)

21t (D 2 ) (d 1) (96)A 12 r,

2 In
r 1 -d!

A 23 = 2jtL2a,(4.5)(caracteristic lngth) (97)

A lb = AId = i (r,- ad ,)2 (98)

A 2 =A2df=(r.+d 2 ) 2 -AIb (99)

A 3 =A3d = (r,+ D 3 )2 -A Ib - A 2 , (100)

V 1 =Al6h I  (101)

V 2 = A2#112 (102)

I A - 3 1 h 3  (103)
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These equations are used to construct the matrices

0 A12  0 Alb 0 Ald 0 (104)

A 1 2  0 A 2 3  0 0 A 2 d A 2e

0 A 23  0 0 A 3, A 3d 0

A= Alb 0 0 0 0 0 Abe

0 0 A 3f 0 0 0 Ale

A jd A21 A 3d 0 0 0 0

0 A2 e 0 Abe AIf 0 0,

0 L 12  0 LIb 0 l Id 0 (105)

L 12  0 L 2 3  0 0 L 2 d L 2e

0 L23 0 0 L 31 L 3 d 0

/. 'lb 0 0 0 0 0 Lb,

0 0 3 0 0 0 Lie

I d L2a L3a 0 0 0 0

0 "' 0 Lbe Lle 0 0

vi (106)V= V2

V3)

The geometry matrices A, L and V, along with the soil

property matrices k, p. and cp are used to calculate the

matrices

G 0 12 0 GIb 0 Gid 0 (107)

G 12 0 G23 0 0 G 2d G 2e

0 G 23  0 0 G 3f G 3d 0

G G)b 0 0 0 0 0 Gbe
o 0 G 3f 0 0 0 Gie

( I d G2d G3d 0 0 0 0

0 G 2e 0 0 be G /e 0 0
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(108)

by the equations

k A (109)
G = /'.I;

and

C, = pcp,0 V 1. (110)

These, in turn, are used to generate the coefficient

matrices

(111)

-Gb- G 1 2 -GId G 12

C, C

G12 -G2- G 12 - G23*- G2d G23

C2  C2  C2

G2 3  -G31 -- 23 --G3

C3 C3

Gib (I "d (112)

-, C
-- 0 G -- C72C C ?

0 G31 G 0ET C
C5 C3
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G Ib 0 0 (113)

0 G 31

C=(G G 2 G J

0"C b - Gb 0 0 Gbe (114)
0 -G 3 1 -Gl 0 GetD 0 0 - G ,,d- G 21 - G ,( 0

GbG G 0 -Gbe- Ge, - G 2.)

which are used with Seem's method to calculate the final

multiple input GTFs and scalar constants which for the

12m x 12m slab are:

(204";H1271h9: 000 -2.184]o/7414o-007 5.3595I80348a+005 2.0549408110o-006 (115)
S , "9111 

8
9
523

1, 002 S.3595180348o+00,5 -8.9880223736o+006 1,3598085940a+004

1 7 / 28083144a + 006 2.054940H I0Oa006 1.3598085940o+ 004 -8.5302667268P+006)

!:;I3689e.00 2.,00SO76402001 -6.3178349430P+002 -4.7628513469e.006) (116)
050619:p.0 6.1491664962p 007 -5.426819711@-005 -5.S054928856e-006

86.317.l34,130o 002 -5.4126819711 e+005 2.444434tiS800e007 -7.25004452S7a-003

4.762H5 1 3469P 006 5 .5054928856e - 006 -7.250044S257 e - 003 2.2994803858e + 007 /

-1.0412722758e-007 1.9581095225e-001 -9.6762874788e002 4.2374081459e-006 (117)
8.981095233P-001 -5.7622418860e007 -4.4631067827e00S 4.896879611 Se 006

9.6762874787o-002 -4.4631067827e0005 -2.2049931343e-007 - 1.4768777916,'004]( 4.2374081459P- 006 4.89687961 15e-006 - 1.4768777916e 004 -2.0S23358176e,007/

:t065H049'64P+ 006 .6560367'178o*000 6.7715988886P'+002 - 1.2471449406o"006\ (118)
16660J674i4p. 000 1.797 1 572628a. 007 4.5211655346e + 005 - 1.4460026224@ -006'' 6,1/15988886P+002 4.521 165;346o+005 6.5929516 10 1 a+006 8.5289148747o *003

- ,241 1.49106p 006 - 1.4460026224..+006 H.5289 148747 a+003 6.0581677786a -006

P I = -2.686Y4 (119)

02 = 2.39032

( 3 = -0.YO3485S.
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5.2 VALIDATION

The final set of GTF coefficients and scalar constants cal-

culated using the above equations are used to test the model

for a variety of conditions including diverse climates, slab

size and shape, and sensitivity to input data.

5.2.1 SIZE

The effect of slab size on the accuracy of the model has

been described in Section 4.5. In summary, the model is

quite accurate for relatively small (144 Tr 2) to relatively

large (2025 in 2) square slabs giving an error in total

annual energy consumption of less than 3% in both cases.

The model is slightly more accurate overall for the larger

slab based on the percentage of the data within 15% of the

FDM: 97% for the larger slab vs. 89% for the smaller slab.

5.2.2 CLIMATE

The final GTF coefficients and scalar constants were used

with environmental data for Medford OR, Philadelphia PA, and

Phoenix AZ. Plots of the flux and difference for all four

locations are given in Figures 18,19,20 and 21. Table 8

gives numerical data regarding the accuracy of the models.

For Minneapolis, Medford, and Philadelphia, the difference

between the GTF model and the FDM is very nearly zero. In

all cases the difference is less than 1 I/M 2 except for a

few days at the beginning of the annual cycle. In Phoenix

where the annual mean flux is approximately 1.5 WIM 2, an

error of less than 1 I//m2 can create a significant error

when the actual value of the error is quite small.
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Figure 18: Flux and Difference -- Minneapolis MN
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Figure 19: Flux and Difference -- Medford OR
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Figure 20: Flux and Difference -- Philadelphia PA

14

12

10

6

44. 4

-2

-4

0 100 200 300 400

DAY

Figure 21: Flux and Difference -- Phoenix AZ
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Table 8: Results of GTF Models for Various Locations

MODEL LOCATION MEAN % OF TOTAL % ERROR TOTAL

FLUX DATA ANNUAL IN ANNUAL

[W/m^2 WITHIN ENERGY TOTAL DIFF IN

15% OF CONSUMP ENERGY ENERGY

FDM [kWhr) CONSUMP CONSUMP

[%] [%] [kWhr]

FDM Minneapolis 6.10 ------ 7716.9- --------------

GTF Minneapolis 6.19 89 7786.6 +0.9 +69.7

FDM Medford 3.87 ------ 4867.1

GTF Medford 3.86 78 4856.6 -0.2 -10.5

FDM Philadelphia 3.89 ------ 4893.7

GTF Philadelphia 3.87 78 4863.0 -0.6 -30.7

FDM Phoenix -1.66 ------- 2082.9

GTF Phoenix -1.46 72 -1832.7 -12.0 +250.2

5.2.3 SHAPE

This model was developed assuming a square slab and uses the

circular isotherms which evolve as the result of that geome-

try. Although it was not expected that this model would

adequately model non-square slabs, the extent of the

inaccuracy was unknown. Therefore, parameter sets were con-

structed based on the slab perimeters and areas and using

the above equations. These parameter sets were used to

calculate GTF coefficient matrices and scalar constants, and
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from them, daily average heat fluxes. The results are shown

in Figures 22 and 23. Numerical comparison of these results

to the FDM results for the non-square slabs is given in

Table 9.

As was anticipated, the model does not give good results for

non-square slabs. The form of the errors indicates an inac-

curacy in the calculation of the edge effect. In the summer

when the area effect dominates, the difference between the

FDM and the GTF model is nearly zero. However, as the

ground surface temperature drops and the edge effect becomes

more important, the difference between the FDM and the GTF

model shows an increasing underprediction of the slab heat

loss.

Figure 22: Flux and Difference -- 6 x 24 Rectangle
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Figure 23: Flux and Difference -- 18 x 112 Rectangle
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Table 9: Results of GTF Model for Non-square Slabs

MODEL SLAB SIZE MEAN % OF TOTAL % ERROR TOTAL

[m-2] FLUX DATA ANNUAL IN ANNUAL

[W/m^2 WITHIN ENERGY TOTAL DIFF IN

15% OF CONSUMP ENERGY ENERGY

FDM [%] [kWhr] CONSUMP CONSUMP

[%] [kWhr]

FDM 6 x 24 7.30 9180.2

GTF 6 x 24 5.81 19 7305.2 -25.7 -1875.0

FDM 18 x 112 3.19 56405.2

GTF 18 x 112 2.18 19 38530.3 -31.7 -17874.9
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5.2.4 SENSITIVITY TO INPUTS

It is important to understand the effect of the accuracy of

the input data on the results of the model particularly if

the required data are not available and approximations must

be made. The most probable approximations are:

(1) substituting daily average outdoor dry bulb tempera-

ture for daily average ground surface temperature (T,)

(2) substituting annual average outdoor dry bulb temper-

ature for annual average ground surface temperature (Td)

(3) substituting constant indoor air temperature for

daily average floor surface temperature (Tb) and daily

average floor edge temperature (7,).

These approximations will be tested for the 12m x 12m slab

with the four climatic conditions and the 45m x 45m slab

with Minneapolis MN climate.

The following runs used the final GTF coefficients and sca-

lar constants. When the approximation for one input data

set was used, the remaining inputs were held identical to

those in Runs 1D and 2D.

GROUND SURFACE TEMPERATURE

Table 10 gives the numerical comparison of the data result-

ing from substituting the daily average outdoor air tempera-

ture for daily average ground surface temperature as the

input at T7. The error in total energy consumption over the

entire cycle ranges from 17.1 % to 219.5 %. Inspection of
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the graphical representation of the data (Figures 24, 25,

26, 27 and 28) reveals a corron patterr in the error. In

all cases, the largest factor in the error is a positive

linear offset which is greatest in Phoenix where the temper-

ature difference between the air temperature and ground tem-

perature is highest. The larger slab, where the edge effect

is less substantial, shows a much smaller effect of changing

far field temperature.

DEEP GROUND TEMPERATURE

Table 11 and figures 29, 30, 31, 32 and 33 show the results

of using the annual average outdoor air temperature as the

deep ground temperature, 7"d. Because the annual mean out-

door air temperature is less than the annual mean ground

surface temperature, the calculated heat loss from the slab

is correspondingly higher. Again, the largest component of

the error is the linear offset. The error is small in

moderate and cold climates -- less than 5%. In Phoenix

there is only a slight difference between the annual mean

outdoor air temperature and the indoor air temperature

(0.1C) so that the anrual mean heat flux through the slab is

very small compared to other locations where the temperature

difference is an order of magnitude larger. At the same

time, the difference between the annual mean outdoor air

temperature and the annual mean ground surface is much

greater in Phoenix due for the most part to the increased

solar gain. The consequence of these two conditions is a

much greater effect from this substitution than is seen in

the other climates. In general, however, it gives good

results and even gives a slightly better fit in some cases
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as evidenced by the increase in the percentage of the data

within 15% of the FDM data for small slab in Medford and the

larger slab in Minneapolis.

SLAB TEMPERATURE

In this case a constant value is substituted for the input

data set. This is a convenient substitution and practical

for the many cases where the slab temperature is, in fact,

nearly constant. Table 12 and Figures 34, 35, 36 and 37

give the results of this substitution. In assuming a con-

stant temperature approximately 10% higher than the actual

floor surface temperature a error of roughly 10% is

introduced. This error is primarily a linear shift, which

appears typical of input data set changes. It seems to be

due for tne most part to the difference between the mean

value of the original data set and the mean of the substi-

tuted data. As in all the other cases of input substitu-

tion, the effect is substantially smaller for the larger

s' b.

GENERAL COMMENTS

For the most part, the changes described in this section

cause linear shifts of the flux curve. This linear shift

appears to be related principally to the difference between

the mean of the original data set and the mean of the sub-

stituted data. The slight changes in the shape of the input

data curves do not have a great effect on the flux. It is

probable, based on the linearity of the change, that alter-

ing more than one input would result in a linear shift

related to the added effects of the individual changes.
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Table 10: Results of Substituting Daily Average Outdoor Air

Temperature for Daily Average Ground Surface Temperature

MODEL LOCAT'N EDGE MEAN % OF TOTAL % ERROR TOTAL

SIZE FLUX DATA ANNUAL IN ANNUAL

[m] [W/m^2] WITHIN ENERGY TOTAL DIFF IN

15% OF CONSUMP ENERGY ENERGY

FDM [kWhr] CONSUMP CONSUMP

[%] [%] [kWhrj

FDM Minn 12 6.13 7716.9

GTF Minn 12 8.11 21 10197.4 +24.3 +2480.5

FDM Medford 12 3.87 4867.1

GTF Medford 12 6.30 17 7923.0 +62.8 +3055.9

FDM Phila 12 3.89 4893.7

GTF Phila 12 5.65 12 7101.6 +45.1 +2207.9

FDM Phoenix 12 -1.66 ----- -2082.9

GTF Phoenix 12 1.98 2 2488.8 -219.5 +4571.7

FDM Minn 45 2.50 44167.7

GTF Minn 45 2.92 47 51711.8 4.17.1 +7544.1
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Figure 24: Flux and Difference -- - -- Minneapolis MN
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Figure 25: Flux and Difference -- lt-T, -- Medford OR
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Figure 26: Flux and Difference -- ,-- Philadelphia

PA
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Figure 27: Flux and Difference -- Ft -- Phoenix AZ
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Figure 28: Flux and Difference -- 7'/-',o. -- 45 x 45

Minneapolis MN
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'able 11: Re:;ujtt ot s;ui:;tituting Annual Average Air Tem-

perature for Annual Averaqe Ground Surface Temperature

MOI)EI, IOCA['N EDGE MIAN % o" TOTAL % ERROR TOTAL

SIZE IUX DATA ANNUAL IN ANNUAL

[m] [W/m^2] WITIIIN ENERGY TOTAL DIFF IN

I')% OF CONSUMP ENERGY ENEPGY

1"DM [kWhr] CONSUMP CONSUMP

%] [%] [kWhr]

I'[3M Minn 12 6. 13 - 7716.9

CT" Minn 12 ,. 52 81 0 95,0. - 2.9 1233 .'

1'I)M Med ford 12 3.87 ------ 487. -------

GTF' Medford 12 4.04 79 5083.7 44.5 -4216.6

F'I)M Phi l1a 12 3.89 ------- 4893.7

(;'I'F Phi la 12 3.99 78 5020.4 42.6 +126.7

F,')M P)hoen ix 12 -I1 . - ..... -. 2082.9

GTF Phoen i x 12 -1.03 12 -1299.7 -37.6 +783.2

1.11M Minn 45 2.50 -------- 44167.7

GTF' Minn 45 2.51 100 44395.6 f0.5 +227.9

/ . .



Figure 29: Flux and Difference -- ' T, Annual Mean , --

Minneapolis MN
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Figure 31: Flux and Difference -- =Annual Mean I,-

Philadelphia PA

DAN

F'iqure 32: Flux and Difference -- 4a Annual Mean T . -

Phoenix AZ

IV

A A.

DAN

72



Figure 33: Flux and Difference -- Td = Annual Mean 7'1 --

45 x 45 -- Minneapolis MN
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Table 12: Results of Substituting Constant Indoor Air Tem-

perature for Daily Average Slab Surface Temperature

MODEL LOCAT'N EDGE MEAN % OF TOTAL % ERROR TOTAL

SIZE FLUX DATA ANNUAL IN ANNUAL

[m] [W/m-2] WITHIN ENERGY TOTAL DIFF IN

15% 0' CONSUMP ENERGY ENERGY

FDM [kWhr] CONSUMP CONSUMP

[%] [%] [kWhr]

FDM Minn 12 6.13 ------ 7716.9

GTF Minn 12 6.74 63 8480.0 +9.0 +763.1

FDM Medford 12 3.87 ------ 4867.1

GTF Medford 12 4.27 66 5967.6 +10.3 +1100.5

FDM Phila 12 3.89 ------ 4893.7 -

GTF Phila 12 4.29 62 5398.7 i0.3 +505.0

FDM Phoenix 12 -1.66 -------2082.9

GTF Phoenix 12 -1.38 66 -1736.8 -16.6 +346.1

FDM Minn 45 2.50 ------ 44167.7

GTF Minn 45 2.47 99 {43725.3 -1.0 -442.4
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Figure 34: Flux and Difference -- -- Minneapolis MN
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Figure 35: Flux and Difference -- Tb=Ti, -- Medford OR
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Figure 36: Flux and Difference -- Fb=T -- Philadelphia PA
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Figure 37: Flux and Difference -- Tb=T,,,- Phoenix AZ
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Figure 38: Flux and Difference -- T,=T,-- 45 x 45 --

Minneapolis MN
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6 NETWORK PARAMETERS BASED ON CHARACTERISTIC LENGTH

Bahnfleth [3] reports that heat flux through slabs of sev-

eral different rectangular geometries can be calculated

based on the slab characteristic length (A/P). This leads

to the speculation that it may be possible to define the

network parameters as functions of the soil geometry and

slab characteristic length (A/P), thereby allowing the use

of the model with non-square slabs.

As a crude test of this proposition, empirical models were

developed for slabs of four different configurations: 12m x

12m, 45m x 45m, 6m x 24m, and 18m x 112m. Little attempt

was made at this point to attach geometric significance to

the network parameters, but rather, each parameter set was

adjusted based primarily on the quality of the resulting fit

to each individual set of base case data. A parameter set

was considered acceptable when more than 80% of the result-

ing data were within 15% of the corresponding FDM data and

the error in total annual heat flux was less than 5% with

the Minneapolis MN weather data. It should not be assumed

that these parameter sets are in any way optimal. Once a

set of parameters for each configuration was developed, the

network parameters were compared in an effort to identify

patterns among the four cases (see Table 13).

Several relationships became evident. 113f. A23, 1%, and 1'2

are of identical or similar value when the area of the slabs

are (nearly) identical. This is a strong indication that

those parameters are functions of the slab area. Corre-

spondingly, .b-I, anl 12d appear to be functions of the slab

perimeter. The remaining parameters are assumed to be
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functions of characteristic length, A/P. Pairing the two

square slabs and the two non-square slabs, a line is fit to

each set and the coefficients of the resulting equations

compared. For equations of the form

y = a +bx (114)

the coefficients and variables are shown in Table 14.

It is clear that a single set of linear equations for the

network parameters in terms of the slab area, perimeter or

characteristic length can be written and should give accept-

able results for all four cases. A suggested set of equa-

tions, based on these data is shown in Table 15. Network

parameters are calculated using these data and are shown in

Table 16.

Using the original L matrix and the A and V matrices gener-

ated using Table 16, new GTFs and scalar constants are

calculated and QCALC is used to calculate the daily average

heat flux through the slab using Minneapolis MN climatologi-

cal data. The results are shown in Figures 38, 39, 40, and

41. Numerical comparisons are given in Table 17. In all

cased more than 80% of the data are within 15% of the FDM

data, and the error in total energy consumption is less than

10%. It is evident that it is possible to develop a set of

equations for calculating network parameters as functions of

slab area, perimeter and characteristic length which give

good results for a variety of rectangular geometries. The

equations developed for this example should not be consid-

ered universal; a more rigorous method of parameter estima-
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tion should be used to develop a truly generic parameter

set. Nonetheless, this example indicates that such a

procedure should yield good results.

Table 13 Parameter Sets for Empirical Models

12x12 45x45 6x24 18xI12

AREA [if 2] 144 2025 144 2016

PERIMETER [m] 48 180 60 260

A/P [m] 3.00 11.25 2.4 7.75

% WITHIN 15% OF 87 95 82 97

FDM

% ERROR IN TOTAL +3.3 -2.7 -0.6 -3.8

ENERGY CONSUMP-

TION

1]1 157 608 121 415

/112 493 1934 385 1322

j'be 200 650 255 1000

A23 800 3000 792 3000

I b I d 100 1881 90 17r0

2d= A 2, 400 1500 600 2600

3 id 800 2000 878 2000

so1 80 1000 80 1000

320 1850 320 2000

100 100 100 100
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Table 14: Equations of Lines Fit to Empirical Data

PARAMETER a b VARIABLE

SQUARE NONSQUARE SQUARE NONSQUARE

Aje -7.0 -11 55 55 A/P

A 12 -31 -35 175 175 A/P

Abe 36 32 3.4 3.7 P

J423 632 622 1.2 1.2 A

AI b = d -36 -38 .95 .89 A/P

2,d=/I e 0 89 8.3 7.35 P

43 f Aad 708 792 .64 .60 A

9.6 9.2 .49 .49 A

I'2 203 191 .81 .90 A

I/ 3 100 100 0 0 CONSTANT
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Table 15: Equations of Common Lines Fit to Empirical Data

PARAMETER a b VARIABLE

I le -9.0 55 A/P

4 12 -33 175 A/P

Abe 34 3.6 P

/123 627 1.2 A

AIb= A Id -36 .9 A/P

A 2d =4 2, 0 9 P

A,=3 /13d 750 .6 A

' 9.4 .5 A

V 2  203 .9 A

1 100 0 CONSTANT
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Table 16: Parameter Sets Calculated Using Empirical

Equations

12x12 45x45 6x24 18x112

/IREA [i 2] 144 2025 144 2016

PERIMETER 48 180 60 260

[m]

A/P [m] 3.00 11.25 2.4 7.75

Ate  156 610 123 417

V"12 492 1936 387 1324

1b. 207 682 250 970

A 23  800 3057 800 3046

AIb= Ald 94 1787 94 1778

/12d= A2e 432 1620 540 2340

,A3 1 =A 3d 836 1965 836 1960

81 1022 81 1017

/2 327 2020 327 2011

100 100 100 100
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Figure 39: Flux and Difference -- Run 3A
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Figure 40: Flux and Difference -- Run 3B
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Figure 41: Flux and Difference -- Run 3C
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Figure 42: Flux and Difference -- Run 3D
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Table 17: Results of GTF Model Using Parameter Sets Based

on Empirical Equations

MODEL MEAN % OF TOTAL % ERROR TOTAL

FLUX DATA ANNUAL IN ANNUAL

[W/m-2] WITHIN ENERGY TOTAL DIFF IN

15% OF CONSUMP ENERGY ENERGY

FDM [kWhr] CONSUMP CONSUMP

[%] [%] [kWhr]

FDM-12xI2 6.10 ------ 7716.9

GTF-12x12 6.57 80 8263.1 +6.6 +546.2

FDM-6x24 7.30 ------ 9180.2

GTF-6x24 7.31 81 9190.5 +0.1 +10.3

FDM-45x45 2.50 ------ 44167.7

GTF-45x45 2.47 93 43763.6 -0.9 -404.1

FDM-18xlI2 3.19 ------ 56405.2

GTF-18xlI2 2.93 86 51765.1 -8.2 -4640.1
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7 UTILIZATION OF THE GTF MODEL FOR ENERGY ANALYSIS

Because of its conceptual similarity to existing energy

analysis programs using transfer function models of building

components, this model is particularly suitable for incorpo-

ration into these programs. When used with these types of

hourly energy analysis programs, the ground network would be

seen as another zone connected to the conditioned space by

an "interzone partition" which would include the slab itself

and the top 0.5m of soil. The surface inner and outer tem-

peratures of the "partition" would be the calculated hourly

slab surface temperature and the GTF model slab center and

edge temperatures (which are equal in this case), respec-

tively. An algorithm for the calculation of ground surface

temperatures (such as TEARTH, developed by Bahnfleth) must

be included in the processing of weather data in order to

provide correct input values for the far-field and deep

ground temperatures.

This model could also serve as part of a stand-alone slab

heat loss program for situations where the daily average

slab surface temperatures are known or can be reasonably

approximated. For example, Section 5.2.4 showed that sub-

stituting a constant indoor air temperature in place of the

slab surface temperature gave acceptable results for all

locations and both slab sizes. The program would also

require an algorithm for the calculation of undisturbed

ground surface temperatures.

87



8 CONCLUSIONS

A simple multiple-input transfer function model of the heat

transfer in the ground beneath a square slab was presented.

It was tested and modified to model both relatively small

slabs where edge effects are strong and larger slabs whose

heat flux is more strongly effected by the flux through the

core. Tested over a broad range of climatic conditions, the

model calculates slab heat flux within 1 hr/In 2 at all times

and for all locations. This translates to an error of less

than 1% (as compared to the detailed finite difference

model) for moderate and cold climates and 12% for Phoenix

where the total flux is very low. The accuracy of the model

is dependent upon the accuracy of the input data, however,

some reasonable approximations to the necessary input data

can give acceptable results.

The full capability of the model was not tested in this

study. Further work to develop a definition of the network

parameters based on characteristic length could expand the

use of the model to non-square and possibly even non-

rectangular surfaces. Testing, and if necessary, modifica-

tion of the parameter equations to support differential slab

core and slab edge temperatures would allow the model to be

used more effectively for insulation studies where the

placement of the insulation is contingent on the slab to

environment temperature difference.
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APPENDIX A SEEM'S METHOD

Seem's Method for Calculating Transfer Functions

for Multidimensional Heat Transfer

The system is described by a series of equations in state

space formulation:

,\ (A.li)
= AN\+1B I

dt

Q = CX +DU (A.2)

where

V= vector of state variables

U' = vector of known input variables

Q= vector of output variables.

The solution of this system of equations is:

fl 6  (A.3),\"- 6= 0 x" + f , 0 ' -' RI/(-V;) d ,

The input function of the form:
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U() = U, + -t U) (A. 4)

is substituted into the solution equation and the integrals

evaluated leaving the solution equation

X' I=4A'+(r 1 -r 2 )L/ 1 +r 2 U, (A.5)

where

) c-18 = the exponential matrix

F= A (eA- I)B

F2 =A- - - 23

The forward shift operator

Fu =u,6 (A.6)

which relates v,.8 to its previous values ut, is used in the

solution equation in order to :"sc the equation entirely in

time t:

(Fl - )X, = (FE2 + ' I - F2 )L/, (A.7)

or

A', = (FI - ) - (FI' 2 + r - F 2 )U , •

This equation gives the state variables in terms of the

inputs. It is substituted back into the state output

equation to give the outputs in terms of the inputs!
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Q, = (C(F I - 4)- (FI + V - 1)+D)i (A.8)

where

( F I R o f -  + R -, 2 + . + R , _2 F + R . - ( A . 9 )

F" + e I t ... +o, l

Substituting, combining common terms of the forward shift

operator, F, and shifting the equation n timesteps back

leaves the transfer function equation

Q, i Q,-b + ... + eQt-,,6 = (CI?0 1 2 + )U, (A. 10)

+ (C (Ro(I - F 2 ) + R 1I',) + c, jD)U,_,

+ (C(R I (F, - 12) + R2, I',) + o2'D)I/,_; +...

+ (C (R.- 2( U - F?) + R. I2) + D)U t-(,_- )b

+ (C R,_1 (' - F 2 ) + e,

More concisely,

Qt ('s, 'I t- )- (O,Q,_,6)

So= C I 2,+ D

.3,= C(R,_(I-1 2 )+IR/F 2 )+oID [orl Kn- I

S, CR, I (F1 - 2)+ ,(D

Seem's computationally efficient procedure for calculating

numerically significant coefficients uses Leverrier's alqo-

rithm with the analytical solution as follows:
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1. Calculate the exponential matrix by a truncated power

series expansion with scaling and squaring

1.1 Calculate the matrix row norm of matrix A6

n

IA a= Yax jaijbI (A.12)
I Stn j- 1

1.2 Find the smallest integer k such that

2'- lq l. (A.13)

1.3 Divide matrix Ab by 2k.

1.4 Calculate the number of terms to keep

L = m in {(31-2161+ 6) v 1oo) (A.14)

A6

1.5 Calculate 
02k

__ (1)2 (b)3 A6)L(A.15)

0e = + + +, .

2 ' 2 3 f L'

1.6 Calculate e

_
4 6  

2 (A.16)

2. Calculate V, anI I';
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S.- 6 - )3 (A. 17)

3. Calculate the S0 matrix

S0 = CRoF 2 + D (A. 18)

4. Calculate the S matrices for I < j n - I where n is the

number of state variables

4.1 Set starting R matrix to the identity matrix

R1?,, = I (A.19)

4.2 Calculate the scalar constant, e, and the next R

matrix, R,,,

Ro.d =R ,,o (A.20)

Trace(4)R I,?()

R 0 = I ?,,+e i

4.3 Calculate the next S matrix

S, = C(Rod(" I - "2 ) + Rn,,-2) + eE1 (A. 21)

4.4 Iterate 4.2 - 4.3 resetting j = j+1 until j =

n-1
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5. Calculate scalar constant and S matrix for j = n

Trace (4 R,.) (A.22)
On=
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APPENDIX B TRUE BASIC PROGRAM GTF

TRUBASIC PROGRAM GTF

FOR CALCULATING MULTIPLE INPUT GROUND TRANSFER FUNCTION

COEFFICIENTS AND SCALAR CONSTANTS

RECORD,RECSIZE 64

INPUT PROMPT "RUN ID? "1: runid$

OPEN #3: NAME "ID: \TRUBASIC\INDATA\"&runid$&"GTFs",CREATE

NEWOLD, ORGANIZATION

SET #3: POINTER BEGIN

WRITE #3: DATE$,TIME$

WRITE #3: runid$

DIM CONDUCTIV TTY(7,7) ,DENSITY(3) ,SPECIFICHT(3)

DIM AREA(7,7),LENGTH(7,7)

DIM P(4),H(7),AOV(7),VOLUME(3)

DIM DISTANCE(4)

DIM G(7,7),CINV(3),D(4,4),C(4,3),A(3,3),B(3,4)

DIM IDEN(3,3),PHIADJ(3,3),PHI(3,3),PHINEW(3,3),FACTOR(3,3)

DIM ADEL(7,7),AADJ(7,7)

DIM GAI4IvA1(3,3),GAMMA2(3,3),AINV(3,3),TEMP1(4,4),TEMP2(4,4)

DIM ROLD(1O,1O),RNEW(10,1O),SOLD(1O,10),SNEW(10,1O),SFINAL(1

0,10)

DIM TABLE(4,4)

CALL PROPERTIES

CALL MODEL

REM Generic Equation Construction

REM set up equation matrices
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REM set up general configuration

REM for model with 3 state variables and 4 inputs

REM

LET num state var=3

LET numinputs=4

REM

REM Generate thermal resistance matrix G with equation

REM G(i,j) = k(i,j)*A(i,j)/L(i,j)

REM

MAT G=ZER

FOR i=1 to numstatevar + numinputs

FOR j=l to numstatevar + num inputs

IF LENGTH(i,j)=O THEN

LET G(i,j)=O

ELSE

LET G(ij)=CONDUCTIVITY(i,j) *AREA(i,j)/LENGTH(i,j)

END IF

NEXT j

NEXT i

REM

REM Generate the matrix of the inverses of the thermal

capacitances

REM CINV(i) = (DENSITY(i)*SPECIFIC_HT(i)*VOLUME(i))^(-I)

REM

FOR i=1 to num state var

LET CINV(i)=(DENSITY(i)*SPECIFIC_HT(i)*VOLUME(i)) (-i)

NEXT i
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REM

REM Generate the coefficient matrices

REM

REM

REM

REM COEFFICIENT MATRICES OF THE BASIC EQUATIONS

REM

REM dX/dT = A*x + B*u

REM

REM Q = C*x + D*u

REM

REM where > is the vector of state variables and

REM u is the vector of inputs

REM

REM Matrix A

FOR i=1 to num state var

FOR j=l to numstatevar

LET A(i,j)=G(i,j) *CINV(i)

NEXT j

FOR k=l to numstate _var + num inputs

LET A(i,i) = A(i,i) - G(i,k)*CINV(i)

NEXT k

NEXT i

REM Matrices B and C

FOR i=1 to num state var

FOR j=l to numinputs

LET B(i,j)=G(i,j+num state_var)*CINV(i)
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LET C(j,i)=G(i,j+num_statevar)

NEXT j

NEXT i

REM Matrix D

FOR i=1 to num inputs

FOR j=l to num _inputs

LET D(i,j)=G(i+numstate_var,j+numstatevar)

NEXT j

FOR k=l to numstatevar + num inputs

LET D(i,i)=D(i,i)-G(i+num state_var,k)

NEXT k

NEXT i

CALL TF

CALL STEADYSTATESOLN

SUB TF

REM Calculation of Transfer Function

CALL CALCPHI

CALL CALCGAMMAS

CALL CALCSCOEFF

END SUB

SUB CALCPHI

REM Calculate exponential matrix PHI

REM del=size of time step=l hour
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LET del=l. 0

MAT ADEL=del*A

REM Calculate the matrix row norm

FOR i = 1 to num state var

LET test=O

FOR j=l to numstatevar

LET test = test + ABS(ADEL(i,j))

NEXT j

LET matrix row norm=MAX(matrixrownorm,test)

NEXT i

REM Find the smallest integer such that 2linteger is

greater than or equal to

REM the matrix row norm

DO WHILE 2^count<matrix row norm

LET count=count+l

LOOP

REM Divide matrix ADEL by 2^integer

MAT AADJ=(2-(-count))*ADEL

REM Calculate matrix row norm for adjusted ADEL matrix,

AADJ

FOR i=1 to num state var

LET test=O

FOR j=1 to numstatevar

LET test = test + ABS(AADJ(i,j))
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NEXT j
LET aad) matrix-row-noian=MAX(aad) mnatrix-row-norm,test)

NEXT i

REM Calculate number of terms to keep

LET how-far=MIN( ((3*adj matrix-row norm)+6) ,l0)

REM Calculate the exponential of the adjusted matrix, AADJ

MAT IDEN=IDN(num-state-var)

LET num=2

MAT PHIADJ=ZER(UBOUND(A,l) ,UBOUND(A,2))

DO WHILE num<=how-far

LET factorial =1

FOR i=num to 1 STEP -1

LET factorial=factorial*i

NEXT i

LET factora= (1/factorial)

MAT FACTOR=factora*AADJ

FOR j=1 to num-1

MAT FACTOR=FACTOR*AADJ

NEXT j
MAT PHIADJ=FACTORePHIADJ

LET num=num+l

LOOP

MAT PHIADJ=AADJ+PHIADJ

MAT PHIADJ=IDEN+PHIADJ

REM Calculate exponential of matrix ADEL from exponential

of matrix AADJ
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FOR i=1 to count

MAT PHINEW=PHIADJ*PHIADJ

NEXT i

IF count=O THEN

MAT PHI=PHIADJ

ELSE

MAT PHI=PHINEW

END IF

END SUB

SUB CALCGANIMAS

REM Calculate GAMMAl and GAMI4A2

MAT AINV=INV(A)

LET determinant-DET

MAT TEMPl=PHI-IDEN

MAT TEMPl=AINV*TEMP1

MAT GAMMAl=TEMPl*B

MAT TEMPl=(1/DEL) *GA4v1vTJl

MAT TEMPl=TEMPl-B

MAT GANMA2=AINV*TEMPl

END SUB

SUB CALCSCOEFF
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MAT TEMP1=IDEN*GA4MA2

MAT TEMP1=C*TEMP1

MAT SOLD=TEMP1+D

MAT WRITE #3:SOLD

MAT TABLE=zer(num inputs, nurn inputs)

MAT TABLE=SCLD

MAT RNEW=IDEN

FOR 1=1 to num -state-var

MAT ROLD=RNEW

MAT TEMPI=PHI*ROLD

LET trace = 0

FOR j=1 to num-state-var

LET trace=trace+TEMP1 (j~j

NEXT j

LET e=-trace/i

WRITE #3: e

MAT TEMP1=PHI*ROLD

MAT TEMP2=e*IDEN

MAT RNEW=TEMP1+TEMP2

MAT TEMP1=GAMMA1 -GAMMA2

MAT TEMP1=ROLD*TEMP1

MAT TEMP2=RNEW*GAMMA2

MAT TEMP1=TEMP1+TEMP2

MAT TEMP1=C*TEMP1

MAT TEMP2=e*D

MAT SNEW=TEMP1+TEMP2

MAT WRITE #3: SNEW
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NEXT i

END SUB

SUB PROPERTIES

REM Assignment of soil properties

MAT CONDUCTIVITY = 8.640e4

!J/day-m-K

MAT DENSITY = 1200

!kg/m-3

MAT SPECIFICHT = 1200 !J/kg-K

END SUB

SUB MODEL

REM Surface Description

REM Square Surface

LET surfacelength=12

LET area of surface=surface-length^2 !m2

LET perimeterofsurface=4*surface length !m

LET cl-area ofsurface/perimeterof surface

LET DISTANCE(1)=3.5 !m

LET DISTANCE(2)=14.5 !distance to deep ground temp m

LET DISTANCE(3)=12.5 !distance to far field temp m

LET DISTANCE(4)=perimeterofsurface/(2*pi) !distance

center to edge m

REM Model

REM Basic Geometry
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LET P(1)=2*pi*(1.O)/1og(DISTANCE(4)/(DISTANCE(4)-1.O))

LET P(2)=P(1)

LET P(3)=2*pi*4.5*cl

LET P(4)=P(3)

LET H(1)=DISTANCE(1)

LET H(2)=DISTANCE(2)-h(1)

LET H(3)=h(l)

LET H (4) =DISTANCE (2) -h (3)

LET H(5)=DISTANCE(2)/2

LET H(6)=1.0

LET H(7)=O.1

LET AOV(1)=P(1)*H(1)

LET AQV (2) =P (2) *H (2)

LET AOV(3)=P(3)*H(3)

LET AOV (4) =P (4) *H (4)

LET AOV(5)=pi*((area-of-surface/pi)O0.5-1.0)^2

LET AOV(6)=pi*((area-of-surface/pi)^O.5+2.5+O.15*c1)^2-

AOV (5)

LET AOV(7)=pj*((area-of-surface/pi)O0.5+DISTANCE(3))-2-

AOV(6) - AOV(5)

LET VOLUME(1)=AOV(5)*H(5)

LET VOLUME(2)=AOV(6)*H(6)

LET VOLUME(3)=AOV(7)*H(7)

REM Set up basic geometry MATRICES

M4AT AREA=ZER

LET AREA(1,2),AREA(2,1)=AOV(2)

LET AREA(1,4),AREA(4,1)=AOV(5)

LET AREA(1,6),AREA(6,1)=AOV(5)
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LET AREA(2,3),AREA(3,2)=AOV(4)

LET AREA(2,6),AREA(6,2)=AOV(6)

LET AREA(2,7),AREA(7,2)=AOV(6)

LET AREA(3,5),AREA(5,3)=AOV(7)

LET AREA(3,6),AREA(6,3)=AOV(7)

LET AREA(4,7),AREA(7,4)-AOV(l)

LET AREA(5,7),AREA(7,5)=AQV(3)

MAT LENGTH=ZER

LET LENGTH(1,2),LENGTH(2,l),LENGTH(4,7),LENG.-TH(7,4)-

=DISTANCE (4)

LET LENGTH(1,4),LENGTH(4,1),LENGTH(2,7),LENGTH(7,2),LENGTH(3

,5) ,LENGTH(5,3)=DISTANCE(1)

LET LENGTH(1,6),LENGTH(6,1),LENGTH(2,6),LENGTH(6,2),LENGTH(3

,6),LENGTH(6,3)=DISTANCE(2)-DISTANCE(l)

LET 1LENGTH(2,3),LENGTH(3,2),LENGTH(5,7),LENGTH(7,5)-

=DISTANCE (3)

END SUB

SUB STEADY STATE SOLN

REM Calculate the steady-state solution

DIM X(3,l),CBA(4,4),GG(4,4),T(4,l),Q(4,l)

MAT AINV=INV(A)

MAT X=AINV*B

MAT CBA=C*X
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MAT GG=D-CBA

MAT GG=(1/(3600*24) )*GG

MAT WRITE #3: GG

END SUB

END
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APPENDIX C TRUBASIC PROGRAM QCALC

TRUE BASIC PROGRAM QCALC

FOR USING MULTIPLE-INPUT GROUND TRANSFER FUNCTIONS

AND SCALAR CONSTANTS TO CALCULATE HEAT FLUX

INPUT PROMPT "IGTF run id? ":gjtfrunid$

INPUT PROMPT "LOCATION run id? ":locid$

INPUT PROMPT "RUN NUMBER id? "1:numid$

INPUT PROMPT "Number of timesteps to calculate?":endtiime

LET runid$=locid$&numid$

LET outname$=gtfrunid$&arunid$&"OUT'I

OPEN #3:NAME

"ID:\TRUBASIC\INDATA\"&gtfrunia $&"GTFS" ,ORGANIZATION

RECORD,RECSIZE 64

OPEN #4 :NAME "ID: \TRUBASIC\INDATA\"&locid$&"GSTEMP" ,CREATE

NEWOLD,ORGANIZATION RECORD, RECSIZE 64

OPEN #5:NAME "ID: \TRUBASIC\DATA\"&outname$, CREATE NEWOLD,OR-

GANIZATION RECORD,RECSIZE 64

SET #5:POINTER BEGIN

OPEN #9:NAME

"ID:\TRUBASIC\INDATA\"&locid$&"BTEMP" ,ORGANIZATION

RECORD,RECSIZE 64

RESET #9:BEGIN

READ #3:gtfrundate$,gtfruntime$,gtfrunid$

DIM SO(4,4),S1(4,4),S2(4,4),S3(4,4),E(Q TO 3)

DIM SSTF(4,4)

DIM QSTART(4),TSTART(4)

DIM Q(4,0 TO 3),T(4,0 TO 3)
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DIM QO(4),TO(4),QSAVE(4)

DIM FACTORO(4,O TO 3),FACTORl(4,0 TO 3),FACTOR2(4,O TO

3),FACTOR3(4,0 TO 3),FACTORE(0 TO 4)

DIM QDIFF(4),QCONV(4,0 TO 3),PDIFF(4),QDIFFCONV(4)

WRITE #5: outname$,gtfrunid$

WRITE #5:endtime

REM Initialize variables

LET E(0)=0.0

LET num-inputs=4

LET nuni-state-var=3

LET iteration =0

LET er=O.O0l

LET timestep=0

REM Read in Multiple-input GTF coeffcients and scalar con-

stants

MAT READ #3:SO

READ #3: E(1)

MAT READ #3: S1

READ #3: E(2)

MAT READ #3: S2

READ #3: E(3)

MAT READ #3: S3

MAT READ #3: SSTF
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REM Set up starting temperture and flux matrices

RESET #t4: RECORD 2

READ #4:TSTART(2)

READ #9:TSTART(1)

RESET #9:BEGIN

INPUT PROMPT "DEEP GROUND TEMP [K]: ":TSTART(3)

LET TSTART(4) =TSTART(l)

RESET #4:RECORD 2

MAT QSTART=SSTF*TSTART

MAT QSAVE=ZER

FOR inp=l to num-inputs

FOR hr=O to num-state-var

LET Q (inp, hr) =QSTART (inp)

LET T(inp,hr)=TSTART(inp)

NEXT hr

NEXT inp

MAT Q=(3600*24)*Q

DO

REM If system is not yet initialized, initialize system

IF timestep=O THEN

CALL INITLOOP

LET timestep=timestep+l

END IF

IF timestep=1 THEN

RESET #4RECORD 2

END IF

CALL CALCQ

LET timestep=timestep+1

LOOP UNTIL timestep=>endtime
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SUB INITLOOP

REM Initialize system by iterating on first 30 days of data

DO

RESET #4:RECORD 2

LET iteration=iteration+i

FOR in=1 to num -inputs

LET QDIFF (in) =Q (in,0) -QSAVE (in)
IF QSAVE(in)<>O.0 THEN

LET PDIFF(in)=(QDIFF(in)/(ABS(QSAVE(in))))*100

END IF

LET QSAVE (in) =Q (in,O0)

NEXT in

LET cycle=O

DO WHILE cycie<=30

LET cycie=cycle+1

MAT QDIFFCONV=(i/(3600*24) )*QDIFF

FOR inp =1 to num inputs

FOR hour=num-state-var-i to 0 step -1

LET Q(inp,hour+1)=Q(iip,hour)

LET T(inp,hour+1)=T(inp,hour)

NEXT hour

NEXT inp

IF END #4 THEN

RESET #4:record 2

END IF

IF END #9 THEN

RESET #9:BEGIN

END IF

READ #4: T(2,0)

LET T(3,O)=TSTART(3)



REM Set slab edge temperature = slab center temperature

LET TSTART(4) =TSTART(l)

CALL CALCQ

LET T0(1)=T(1,0)

LET TO (2)=T(2,0)

LET TO(3)=T(3,0)

LET T0 (4)=T(4,0)

LET Q0(1) =Q(1, 0)

LET QO(2)=Q(2,0)

LET Q0(3)=Q(3,0)

LET QO(4)=Q(4,O)

MAT QO=(l/(3600*24))*QO

LOOP

REM If system does not initialize in 200 iterations, termi-

nate initialization

IF iteration > 200 THEN

EXIT DO

END IF

LOOP UNTIL ABS(PDIFF(l))<er AND ABS(PDIFF(2))<er AND

ABS(PDIFF(3))<er AND ABS(PDIFF(4))<er AND iteration>5

END SUB

SUB CALCQ

IF timestep>0 THEN

FOR inp =1 to num inputs

FOR hour=num statevar-I to 0 step -1

LET Q(inp,hour+l)=Q(inp,hour)

LET T(inp,hour+l)=T(inp,hour)

NEXT hour
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LET Q(inp,0)=O.O

NEXT inp

IF END #4 THEN

RESET #4:record 2

END IF

IF END #9 THEN

RESET #9:BEGIN

END IF

READ #4: T(2,0)

LET T (3, 0) TSTART (3)

READ #9: T(1,0)

LET TSTART(4) =TSTART(1)

END IF

MAT FACTORO=SO*T

MAT FACTOR1=S1*T

MAT FACTOR2=S2*T

MAT FACTOR3=S3*T

LET factor format$ -. #####

LET qsum=Q.O

FOR L=1l TO 4

LET FACTORE(L)=E(1) *Q(L, 1)+E(2) *Q(L,2)+E(3) *Q(L, 3)

LET Q(L,O)=FACTORO(L,0)+FACTOR1(L,1)+FACTOR2(L,2)±FACTOR3

(L, 3) -FACTORE(L)

LET qsum=qsum+Q(L, 0)

NEXT L

MAT QCONV = (1/(3600*24))*Q

LET qsuxnconv=(1/ (3600*24)) *QSUM
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IF timestep=O THEN

LET c-formatS="-#.########--i

ELSE

WITE #5:QCQNV(1,O),QCONV(2,o),QZCONV(3,o),QCONV(4,o)

END IF

END SUB

END
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